二分解单调函数

4 篇文章 0 订阅
本文介绍了如何使用二分查找算法解决寻找序列中最小值和最大值的问题,通过举例POJ 3273和OJ上的另一道题目,阐述了二分在解决这类问题时的效率优势。同时,作者指出,当需要找到某个范围内的最大或最小值时,二分查找是一种常见的枚举策略。
摘要由CSDN通过智能技术生成

POJ 3273

二分最小值

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
#include <list>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define uint unsigned int
#define PII pair<int,int>
#define PDD pair<double,double>
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 1000001000
#define ALL(x) x.begin(),x.end()
#define PB push_back
#define MOD 99991
#define MAX 111111


int n,m;
int mon[200000];

bool C(int x)
{
    int cnt=0;
    int sum=0;
    for(int i=0;i<n;i++)
    {
        if(mon[i]>x)
            return false;
        if(sum+mon[i]<=x)
            sum+=mon[i];
        else
            sum=mon[i],cnt++;
        if(cnt>m)
            return false;
    }
    cnt++;
    return cnt<=m; 
}

int solve()
{
    int lb=0,ub=INF;
    while(ub-lb>1)
    {
        //cout<<lb<<" "<<ub<<endl;
        int m=(ub+lb)/2;
        if(C(m))
            ub=m;
        else
            lb=m;
    }
    return ub;
}


int main()
{
    READ;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<n;i++)
            scanf("%d",&mon[i]);
        cout<<solve()<<endl;
    }
    return 0;
}

POJ 3258

二分最大值

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
#include <list>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define uint unsigned int
#define PII pair<int,int>
#define PDD pair<double,double>
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 1000001000
#define ALL(x) x.begin(),x.end()
#define PB push_back
#define MOD 99991
#define MAX 111111


int L,n,m;
int len[200000];


bool C(int x)
{
    int l=0;// 上一个石头和上上一个石头之间的距离 如果上一个石头没被去掉则为0
    int cnt=0;
    if(x>L)
        return false;
    for(int i=1;i<n;i++)
    {
        if(l+len[i]-len[i-1]<x)
            cnt++,l+=len[i]-len[i-1];
        else
            l=0;
    }
    return cnt<=m;
}

int solve()
{
    int lb=0,ub=INF;
    while(ub-lb>1)
    {
        int m=(lb+ub)>>1;
        if(C(m))
            lb=m;
        else
            ub=m;
    }
    return lb;
}


int main()
{
    READ;
    while(scanf("%d%d%d",&L,&n,&m)!=EOF)
    {
        len[0]=0;
        len[n+1]=L;
        for(int i=1;i<=n;i++)
            scanf("%d",&len[i]);
        n++;
        sort(len,len+n+1);
        cout<<solve()<<endl;
    }
    return 0;
}


 OJ  上的一道二分+tarjan

http://ecnu.acmclub.com/index.php?app=problem_title&id=29&problem_id=21730


#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
#include <list>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define uint unsigned int
#define PII pair<int,int>
#define PDD pair<double,double>
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 1000001000
#define ALL(x) x.begin(),x.end()
#define PB push_back
#define MOD 99991
#define MAX 11111


int dfn[MAX],low[MAX];
bool instack[MAX];
stack<int> S;
int cnt,cnt_scc;
vector<int> G[MAX];
int n,m;
PII rel[200000];

int tarjan(int u)
{ 
    if(dfn[u]==-1)
    {
        dfn[u]=low[u]=++cnt;
        S.push(u),instack[u]=1;
        for(int i=0;i<G[u].size();i++)
        {
            int v=G[u][i];
            if(dfn[v]==-1)
                low[u]=min(low[u],tarjan(v));
            else if(instack[v])
                low[u]=min(dfn[v],low[u]);
        }
        if(dfn[u]==low[u])
        {
            while(instack[u])
            {
                instack[S.top()]=0;
                S.pop();
            }
            cnt_scc++;
        }
    }
    return low[u];
}

bool C(int x)
{
    MS(dfn,-1),cnt=cnt_scc=0,MS(instack,0);
    for(int i=0;i<MAX;i++)
        G[i].clear();
    while(!S.empty()) S.pop();
    for(int i=0;i<x;i++)
    {
        int f,t;
        f=rel[i].fst;
        t=rel[i].sec;
        G[f].PB(t);
    }
    for(int i=1;i<=n;i++)
    {
        if(dfn[i]==-1)
            tarjan(i);
    }
    return cnt_scc==n;
}

int solve()
{
    int lb=0,ub=m+1;
    while(ub-lb>1)
    {
        int mid=(ub+lb)>>1;
        if(C(mid))
            lb=mid;
        else
            ub=mid;
    }
    return lb;
}

int main()
{
   // READ;
    int cas;
    scanf("%d",&cas);
    for(int T=1;T<=cas;T++)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)
            scanf("%d%d",&rel[i].fst,&rel[i].sec);
        printf("Case %d: %d\n",T,solve());
    }
    return 0;
}



二分总还是蛮。。。。厉害的。

这也是一种枚举方式嘛,要求最大值最小值,基本就是二分的标志了。

专心复习考试去了。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值