1.中国剩余定理又指孙子定理。叙述如下:
令m1,…,mr两两互素, b1,…,br为整数, x≡b1(mod m1),x≡b2(mod m2)……x≡br(mod mr);有唯一正整数解x,其形式为:x=∑biMi’Mi(mod M)(1<=i<=r)
M=∏mi(1<=i<=r) ;Mi=M(mod mi);MiMi’ ≡1(mod mi);
符号定义完了。下面开始证明。
我们需要证明两个问题。
(1)x是方程组的解(负数+M取模为正就好)。
(2)x是唯一解。
先看第一个问题。
定理的前提是m1~mr均是质数,所以gcd(mi,mj)=1(i≠j)。gcd(Mi,mi)=1;
bjMj’Mj≡0(mod mi)(i≠j) 【gcd(Mj,mi)=mi;】
b1M1’M1+b2M2’M2+b3M3’M3+…+brMr’Mr≡biMi’Mi≡bi(mod mi)
可推出x是方程组的解。(1)得证。