同余问题之中国剩余定理 _(:з」∠)_

本文介绍了中国剩余定理(孙子定理),包括其在解决同余问题时的基本形式和证明,以及非互质情况下如何处理。通过证明唯一解的存在性和给出模板,阐述了解决线性同余方程组的方法。此外,还推荐了几道ACM竞赛中的基础练习题,用于巩固理解和应用中国剩余定理。
摘要由CSDN通过智能技术生成

1.中国剩余定理又指孙子定理。叙述如下:

令m1,…,mr两两互素, b1,…,br为整数, x≡b1(mod m1),x≡b2(mod m2)……x≡br(mod mr);有唯一正整数解x,其形式为:x=∑biMi’Mi(mod M)(1<=i<=r)

M=∏mi(1<=i<=r) ;Mi=M(mod mi);MiMi’ ≡1(mod mi);

符号定义完了。下面开始证明。

我们需要证明两个问题。

  (1)x是方程组的解(负数+M取模为正就好)。

  (2)x是唯一解。

先看第一个问题。

定理的前提是m1~mr均是质数,所以gcd(mi,mj)=1(i≠j)。gcd(Mi,mi)=1;

bjMj’Mj≡0(mod mi)(i≠j)   【gcd(Mj,mi)=mi;】

b1M1’M1+b2M2’M2+b3M3’M3+…+brMr’Mr≡biMi’Mi≡bi(mod mi)

可推出x是方程组的解。(1)得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值