TensorFlow 之基于Inception V3的多标签分类 retrain

本文介绍了如何使用预训练的Inception V3模型进行多标签图像分类,包括数据集的准备,标签文件转换,模型的再训练以及图像预测。作者提供了南京大学的多类图像数据集,并分享了转换MATLAB标签文件的脚本和训练脚本的使用方法。
摘要由CSDN通过智能技术生成

本文参考http://blog.csdn.net/Numeria/article/details/73604339
以及参考开源代码github链接: https://github.com/BartyzalRadek/Multi-label-Inception-net

一、准备训练数据

1.下载数据集
本文采用南京大学开源的数据集(点击下载:http://lamda.nju.edu.cn/files/miml-image-data.rar)
数据集中含有2000张图像,5个类,分别为 desert, mountains, sea, sunset , trees。
下载后包含两个压缩文件包:original.rar 以及 processed.rar
original.rar 中包含了2000张图像数据

示例如下:

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值