网络流最大流之Dinic算法模板

bool bfs(int x)
{
	memset(mark,-1,sizeof(mark));
	mark[x]=1;
	int que[maxn];
	int front=0,rear=0;
	que[rear++]=x;
	while(front!=rear)
	{
		int k=que[front++];front%=maxn;
		for(int i=head[k];i!=-1;i=edge[i].next){
			int v=edge[i].v;
			if(mark[v]==-1&&edge[i].flow>0)
			{
				mark[v]=mark[k]+1;
				que[rear++]=v;
				rear%=maxn;
				if(v==des)return true;
			}
		}
	}
	return false;
}
int dfs(int u)
{
		int Stack[maxn],cur[maxn];
        memcpy(cur,head,sizeof(head));
        int top=0;int res=0;
        while(1)
        {
                if(u==des)
                {
                    int min=INF,loc;
                    for(int i=0;i<top;i++){
						if(min>edge[Stack[i]].flow){
								min=edge[Stack[i]].flow;
								loc=i;
						}
					}
                    for(int i=0;i<top;i++)
                    {
                            edge[Stack[i]].flow-=min;
                            edge[Stack[i]^1].flow+=min;
                    }
                    res+=min;
                    top=loc;
                    u=edge[Stack[top]].u;
                }
                for(int i=cur[u];i!=-1;cur[u]=i=edge[i].next)
				{
					if(edge[i].flow&&mark[u]+1==mark[edge[i].v])break;
				}
                if(cur[u]!=-1)
                {
                    Stack[top++]=cur[u];
                    u=edge[cur[u]].v;
                }
                else
                {
                    if(top==0)break;
                    mark[u]=-1;
                    u=edge[Stack[--top]].u;
                }
        }
		return res;
}
int Dinic(int x)
{
	int res=0;
	while(bfs(src))res+=dfs(src);
	return res;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值