The 3n + 1 problem

本文探讨了一种未完全分类的计算机科学问题——一个简单的循环算法。该算法针对不同的输入值展现出未知的行为特性,尽管其结构简单,但其运行终止性仍是一个公开的猜想。文章分析了算法的工作原理,给出了特定输入值下的输出序列示例,并提出了计算循环长度的方法。
摘要由CSDN通过智能技术生成

Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:


    1.      input n

    2.      print n

    3.      if n = 1 then STOP

    4.           if n is odd then   n <- 3n + 1

    5.           else   n <- n / 2

    6.      GOTO 2


Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
 

Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no opperation overflows a 32-bit integer.
 

Output

For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
 

Sample Input

    
    
1 10 100 200 201 210 900 1000
 

Sample Output

    
    
1 10 20 100 200 125 201 210 89 900 1000 174
 

 

我坚信这是一个十足笨的算法,认为可以用动规做,但是因为利用不好已有的数据导致重复计算反而贡献了一个TLE,还是用笨思路AC的,简直呵呵。

#include <stdio.h>

int tim(int ii)
{
    int i = ii;
    int t = 1;
    while (i != 1)
    {
        if (i % 2)
        {
            i = i * 3 + 1;
        }else
        {
            i /= 2;
        }
        t++;
    }
    return t;
}
int main()
{
    int A,a,B,b,i;
    while (~scanf ("%d%d",&A,&B))
    {
        if (A > B)
        {
            a = B;
            b = A;
        }else
        {
            a = A;
            b = B;
        }
        int tmp;
        int imax = 0;
        for (i = a;i <= b;i++)
        {
            tmp = tim(i);
            if (tmp > imax)
                imax = tmp;
        }

        printf ("%d %d %d\n",A,B,imax);
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值