数据仓库系列7:什么是概念模型、逻辑模型和物理模型,它们有什么区别?

你是否曾经困惑于数据仓库中的各种模型?概念模型、逻辑模型、物理模型 - 它们听起来很相似,但实际上各有千秋。
稿定设计-5.png

今天,让我们一起揭开这三大模型的神秘面纱,看看它们如何协同工作,为你的数据仓库搭建一个坚实的基础。
image.png

引言:为什么模型如此重要?

想象一下,你正在建造一座摩天大楼。你会直接开始浇筑混凝土吗?当然不会!你需要先有一个概念设计,然后是详细的蓝图,最后才是实际的建筑计划。数据仓库的建模过程也是如此 - 从抽象到具体,每一步都至关重要。
image.png

让我们深入了解这三种模型,看看它们如何帮助我们构建一个强大、灵活且高效的数据仓库。

1. 概念模型:勾勒数据的蓝图

什么是概念模型?

概念模型是数据建模过程中最高层次的抽象。它就像是你数据世界的"鸟瞰图"。这个模型主要关注的是业务概念以及它们之间的关系,而不涉及任何技术细节。
image.png

概念模型的特点

  1. 高度抽象: 只包含核心实体和它们之间的关系。
  2. 业务导向: 使用业务术语,易于非技术人员理解。
  3. 独立于技术: 不涉及任何特定的数据库技术。
  4. 稳定性: 相对于其他模型,变化较少。
    image.png

概念模型的例子

让我们以一个电子商务平台为例,来创建一个简单的概念模型:

[客户] --- 下单 ---> [订单]
[订单] --- 包含 ---> [商品]
[商品] --- 属于 ---> [类别]

这个简单的图表展示了核心实体(客户、订单、商品、类别)以及它们之间的关系。它不包含任何属性或技术细节,但清晰地表达了业务概念。

概念模型的作用

  1. 沟通工具: 帮助业务人员和技术人员达成共识。
  2. 需求分析: 确保我们捕获了所有重要的业务概念。
  3. 范围界定: 明确项目的边界和重点。

如何创建概念模型

  1. 识别核心业务实体
  2. 定义实体之间的关系
  3. 验证模型是否符合业务需求
  4. 迭代优化,直到所有相关方达成一致

概念模型虽然简单,但它的重要性不容忽视。它为整个数据仓库项目奠定了基础,确保我们从一开始就走在正确的道路上。

2. 逻辑模型:细化你的数据结构

什么是逻辑模型?

逻辑模型是概念模型的下一步细化。它保持了技术中立性,但比概念模型更加详细。逻辑模型定义了数据结构,包括实体、属性、关系和主键。
image.png

逻辑模型的特点

  1. 更多细节: 包含实体的属性和关系的细节。
  2. 规范化: 通常遵循数据库规范化原则。
  3. 独立于特定数据库: 不涉及特定的数据库管理系统(DBMS)。
  4. 业务规则: 包含业务规则和约束。

image.png

逻辑模型的例子

继续我们的电子商务平台例子,让我们看看逻辑模型可能是什么样子:

客户 (客户ID, 姓名, 邮箱, 电话)
    主键: 客户ID

订单 (订单ID, 客户ID, 订单日期, 总金额, 状态)
    主键: 订单ID
    外键: 客户ID 引用 客户(客户ID)

订单项目 (订单ID, 商品ID, 数量, 单价)
    主键: (订单ID, 商品ID)
    外键: 订单ID 引用 订单(订单ID)
    外键: 商品ID 引用 商品(商品ID)

商品 (商品ID, 名称, 描述, 当前价格, 类别ID)
    主键: 商品ID
    外键: 类别ID 引用 类别(类别ID)

类别 (类别ID, 名称, 父类别ID)
    主键: 类别ID
    外键: 父类别ID 引用 类别(类别ID)

这个逻辑模型详细定义了每个实体的属性,以及实体之间的关系。注意我们如何使用主键和外键来表示关系。

逻辑模型的作用

image.png

  1. 详细设计: 为物理实现提供蓝图。
  2. 数据完整性: 通过定义关系和约束确保数据的一致性。
  3. 性能考虑: 可以在这一阶段进行初步的性能优化设计。
  4. 灵活性: 可以相对容易地适应不同的物理实现。

如何创建逻辑模型

  1. 从概念模型开始,详细化每个实体
  2. 定义属性,确定主键
  3. 建立实体之间的关系,定义外键
  4. 应用规范化原则
  5. 添加业务规则和约束
  6. 审查并优化模型
    image.png

逻辑模型中的常见挑战

  1. 粒度选择: 决定数据的详细程度。
  2. 历史数据处理: 如何处理随时间变化的数据。
  3. 性能与规范化的平衡: 有时需要适度反规范化以提高查询性能。

逻辑模型是连接业务需求和技术实现的桥梁。它足够详细以指导实现,又足够抽象以适应不同的技术选择。
image.png

3. 物理模型:将设计落地为实际数据库

什么是物理模型?

物理模型是数据模型的最后一个阶段,它描述了数据在特定数据库管理系统中的实际存储方式。物理模型考虑了性能、存储和可访问性等实际因素。
image.png

物理模型的特点

  1. 特定于DBMS: 使用特定数据库系统的语法和特性。
  2. 性能优化: 包含索引、分区等性能优化策略。
  3. 存储考虑: 定义数据类型、存储参数等。
  4. 安全性: 包含访问控制和安全策略。

物理模型的例子

让我们将之前的逻辑模型转化为PostgreSQL的物理模型:

CREATE TABLE customers (
    customer_id SERIAL PRIMARY KEY,
    name VARCHAR(100) NOT NULL,
    email VARCHAR(100) UNIQUE NOT NULL,
    phone VARCHAR(20)
);

CREATE TABLE orders (
    order_id BIGSERIAL PRIMARY KEY,
    customer_id INTEGER NOT NULL REFERENCES customers(customer_id),
    order_date TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
    total_amount DECIMAL(10, 2) NOT NULL,
    status VARCHAR(20) NOT NULL,
    CONSTRAINT chk_status CHECK (status IN ('pending', 'processing', 'shipped', 'delivered', 'cancelled'))
);

CREATE TABLE products (
    product_id BIGSERIAL PRIMARY KEY,
    name VARCHAR(200) NOT NULL,
    description TEXT,
    current_price DECIMAL(10, 2) NOT NULL,
    category_id INTEGER NOT NULL
);

CREATE TABLE order_items (
    order_id BIGINT NOT NULL REFERENCES orders(order_id),
    product_id BIGINT NOT NULL REFERENCES products(product_id),
    quantity INTEGER NOT NULL,
    unit_price DECIMAL(10, 2) NOT NULL,
    PRIMARY KEY (order_id, product_id)
);

CREATE TABLE categories (
    category_id SERIAL PRIMARY KEY,
    name VARCHAR(100) NOT NULL,
    parent_category_id INTEGER REFERENCES categories(category_id)
);

-- 创建索引以提高查询性能
CREATE INDEX idx_orders_customer ON orders(customer_id);
CREATE INDEX idx_order_items_product ON order_items(product_id);
CREATE INDEX idx_products_category ON products(category_id);

-- 假设订单表会非常大,我们可以按年份分区
CREATE TABLE orders_2024 PARTITION OF orders
    FOR VALUES FROM ('2024-01-01') TO ('2025-01-01');

-- 创建一个物化视图来加速常用的聚合查询
CREATE MATERIALIZED VIEW monthly_sales AS
SELECT 
    DATE_TRUNC('month', order_date) AS month,
    SUM(total_amount) AS total_sales
FROM 
    orders
GROUP BY 
    DATE_TRUNC('month', order_date);

-- 创建一个存储过程来处理新订单
CREATE OR REPLACE PROCEDURE create_order(
    p_customer_id INTEGER,
    p_total_amount DECIMAL(10, 2)
)
LANGUAGE plpgsql
AS $$
BEGIN
    INSERT INTO orders (customer_id, total_amount, status)
    VALUES (p_customer_id, p_total_amount, 'pending');
END;
$$;

这个物理模型包含了具体的表结构、数据类型、约束、索引、分区和存储过程。它是针对PostgreSQL数据库的具体实现。

物理模型的作用

  1. 性能优化: 通过索引、分区等策略提高查询和写入性能。
  2. 存储效率: 选择合适的数据类型和存储参数,提高存储效率。
  3. 可维护性: 通过视图、存储过程等简化复杂操作。
  4. 安全性: 实现访问控制和数据保护策略。

如何创建物理模型

  1. 选择目标数据库系统
  2. 将逻辑模型转换为数据库特定的DDL语句
  3. 选择适当的数据类型和约束
  4. 设计索引策略
  5. 考虑分区和聚集
  6. 实现存储过程和触发器
  7. 设置访问控制和安全策略
  8. 进行性能测试和优化

物理模型中的常见挑战

  1. 性能调优: 需要不断监控和优化以适应变化的数据量和查询模式。
  2. 扩展性: 设计需要考虑未来数据增长。
  3. 维护复杂性: 随着时间推移,可能需要管理大量的对象(索引、视图等)。
  4. 版本管理: 需要谨慎管理数据库结构的变更。

物理模型是数据仓库设计的最后一步,也是最具技术性的一步。它直接影响着数据仓库的性能和可用性。

三种模型的比较

让我们通过一个表格来直观地比较这三种模型:

特征概念模型逻辑模型物理模型
抽象级别最高中等最低
目标受众业务人员数据架构师数据库管理员
包含的细节核心实体和关系实体、属性、关系、键表、列、索引、分区等
技术相关性与技术无关与技术无关特定于DBMS
主要用途业务需求分析数据结构设计数据库实现
变更频率
工具ER图、UMLER图、数据字典DDL、数据库设计工具

从概念到物理:模型转换的最佳实践

将概念模型转换为逻辑模型,再转换为物理模型是一个渐进的过程。以下是一些最佳实践:

  1. 保持一致性: 确保每个阶段的模型都与前一阶段保持一致。

  2. 文档化: 记录每个阶段的决策和变更理由。

  3. 迭代优化: 不要期望一次性得到完美的模型,要准备进行多次迭代。

  4. 验证: 在每个阶段都与相关stakeholder验证模型。

  5. 考虑未来: 设计时要考虑到未来的扩展性和灵活性。

  6. 性能与规范化平衡: 在逻辑模型阶段就开始考虑性能问题,必要时进行适度的反规范化。7. 技术选型: 在进行物理模型设计时,充分考虑目标数据库系统的特性和最佳实践。

  7. 数据质量: 在模型设计的每个阶段都要考虑数据质量问题,如何通过模型设计来确保数据的准确性、完整性和一致性。

  8. 安全性: 从逻辑模型阶段就开始考虑数据安全和访问控制问题,在物理模型中具体实现。

  9. 可追溯性: 确保可以从物理模型追溯到逻辑模型和概念模型,这对于后期的维护和变更管理非常重要。

实际应用:电子商务数据仓库案例研究

让我们通过一个电子商务数据仓库的案例,来看看如何在实际项目中应用这三种模型。

阶段1:概念模型设计

在项目启动阶段,我们与业务团队进行了深入的需求分析,识别了以下核心业务概念:

  • 客户
  • 订单
  • 商品
  • 类别
  • 供应商
  • 促销活动

我们使用简单的实体关系图来表示这些概念及其关系:

[客户] --- 下单 ---> [订单]
[订单] --- 包含 ---> [商品]
[商品] --- 属于 ---> [类别]
[供应商] --- 提供 ---> [商品]
[促销活动] --- 应用于 ---> [商品]
[促销活动] --- 针对 ---> [客户]

这个概念模型帮助我们确定了数据仓库的范围,并为后续的详细设计提供了框架。

阶段2:逻辑模型设计

在逻辑模型阶段,我们进一步细化了每个实体的属性,并定义了它们之间的具体关系。以下是部分逻辑模型设计:

客户维度 (客户ID, 姓名, 邮箱, 电话, 注册日期, 客户等级)
    主键: 客户ID

订单事实 (订单ID, 客户ID, 订单日期, 总金额, 折扣金额, 支付方式, 订单状态)
    主键: 订单ID
    外键: 客户ID 引用 客户维度(客户ID)

商品维度 (商品ID, 商品名称, 描述, 当前价格, 类别ID, 供应商ID)
    主键: 商品ID
    外键: 类别ID 引用 类别维度(类别ID)
    外键: 供应商ID 引用 供应商维度(供应商ID)

订单明细事实 (订单ID, 商品ID, 数量, 单价, 折扣)
    主键: (订单ID, 商品ID)
    外键: 订单ID 引用 订单事实(订单ID)
    外键: 商品ID 引用 商品维度(商品ID)

类别维度 (类别ID, 类别名称, 父类别ID)
    主键: 类别ID
    外键: 父类别ID 引用 类别维度(类别ID)

供应商维度 (供应商ID, 供应商名称, 联系人, 地址, 评级)
    主键: 供应商ID

促销活动维度 (促销ID, 促销名称, 开始日期, 结束日期, 折扣类型, 折扣值)
    主键: 促销ID

促销应用事实 (促销ID, 商品ID, 客户ID, 应用日期, 折扣金额)
    主键: (促销ID, 商品ID, 客户ID, 应用日期)
    外键: 促销ID 引用 促销活动维度(促销ID)
    外键: 商品ID 引用 商品维度(商品ID)
    外键: 客户ID 引用 客户维度(客户ID)

在这个逻辑模型中,我们采用了星型架构,将订单和订单明细作为事实表,其他实体作为维度表。这种设计有利于快速的多维分析和报表生成。

阶段3:物理模型设计

在物理模型阶段,我们需要考虑具体的数据库系统(假设我们使用PostgreSQL)和性能优化策略。以下是部分物理模型设计:

-- 客户维度表
CREATE TABLE dim_customer (
    customer_id SERIAL PRIMARY KEY,
    name VARCHAR(100) NOT NULL,
    email VARCHAR(100) UNIQUE NOT NULL,
    phone VARCHAR(20),
    registration_date DATE NOT NULL,
    customer_level VARCHAR(20) NOT NULL,
    create_date TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
    update_date TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);

-- 订单事实表
CREATE TABLE fact_order (
    order_id BIGSERIAL PRIMARY KEY,
    customer_id INTEGER NOT NULL REFERENCES dim_customer(customer_id),
    order_date DATE NOT NULL,
    total_amount DECIMAL(10, 2) NOT NULL,
    discount_amount DECIMAL(10, 2) NOT NULL DEFAULT 0,
    payment_method VARCHAR(50) NOT NULL,
    order_status VARCHAR(20) NOT NULL,
    create_date TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);

-- 创建分区表以提高查询性能
CREATE TABLE fact_order_2024 PARTITION OF fact_order
    FOR VALUES FROM ('2024-01-01') TO ('2025-01-01');

-- 创建索引以加速常见查询
CREATE INDEX idx_fact_order_customer ON fact_order(customer_id);
CREATE INDEX idx_fact_order_date ON fact_order(order_date);

-- 创建物化视图以加速常用的聚合查询
CREATE MATERIALIZED VIEW mv_daily_sales AS
SELECT 
    order_date,
    COUNT(*) AS order_count,
    SUM(total_amount) AS total_sales,
    AVG(total_amount) AS avg_order_value
FROM 
    fact_order
GROUP BY 
    order_date;

-- 创建存储过程以简化复杂的数据操作
CREATE OR REPLACE PROCEDURE update_customer_level()
LANGUAGE plpgsql
AS $$
BEGIN
    UPDATE dim_customer c
    SET customer_level = 
        CASE 
            WHEN total_spent >= 10000 THEN 'Platinum'
            WHEN total_spent >= 5000 THEN 'Gold'
            WHEN total_spent >= 1000 THEN 'Silver'
            ELSE 'Bronze'
        END,
        update_date = CURRENT_TIMESTAMP
    FROM (
        SELECT customer_id, SUM(total_amount) AS total_spent
        FROM fact_order
        GROUP BY customer_id
    ) o
    WHERE c.customer_id = o.customer_id;
END;
$$;

在这个物理模型中,我们实现了以下优化策略:

  1. 使用适当的数据类型和约束
  2. 创建分区表以提高大表的查询性能
  3. 添加索引以加速常见查询
  4. 创建物化视图以提高聚合查询的性能
  5. 使用存储过程封装复杂的业务逻辑

从模型到实践:数据仓库实施的关键考虑因素

在完成三个层次的模型设计后,实施数据仓库还需要考虑以下几个关键因素:

1. ETL流程设计

抽取(Extract)、转换(Transform)和加载(Load)是数据仓库的核心流程。基于我们的模型,需要设计:

  • 如何从源系统抽取数据
  • 如何清洗和转换数据以符合我们的模型
  • 如何高效地加载数据到仓库中

例如,对于订单数据,我们可能需要:

import pandas as pd
from sqlalchemy import create_engine

def etl_orders():
    # 从源系统抽取数据
    source_engine = create_engine('postgresql://user:pass@source_host/db')
    orders_df = pd.read_sql('SELECT * FROM orders WHERE date > last_etl_date', source_engine)
    
    # 数据转换
    orders_df['total_amount'] = orders_df['subtotal'] + orders_df['tax'] - orders_df['discount']
    orders_df['order_status'] = orders_df['status'].map({'P': 'Pending', 'S': 'Shipped', 'D': 'Delivered'})
    
    # 加载到数据仓库
    target_engine = create_engine('postgresql://user:pass@dw_host/db')
    orders_df.to_sql('fact_order', target_engine, if_exists='append', index=False)

# 定期运行ETL作业
schedule.every().day.at("02:00").do(etl_orders)

2. 数据质量管理

确保数据质量是数据仓库成功的关键。我们需要在ETL过程中实施数据质量检查:

def check_data_quality(df):
    # 检查空值
    null_counts = df.isnull().sum()
    if null_counts.any():
        raise ValueError(f"发现空值: {null_counts[null_counts > 0]}")
    
    # 检查数据范围
    if df['total_amount'].min() < 0:
        raise ValueError("发现负数订单金额")
    
    # 检查唯一性约束
    if df['order_id'].duplicated().any():
        raise ValueError("发现重复的订单ID")

# 在ETL过程中调用
check_data_quality(orders_df)

3. 性能优化

随着数据量的增长,性能优化变得越来越重要。除了前面提到的分区和索引策略,我们还可以:

  • 使用并行处理来加速ETL
  • 实施数据压缩
  • 定期进行统计信息更新
  • 使用查询优化器提示
-- 使用并行查询
SET max_parallel_workers_per_gather = 4;

-- 压缩大表
ALTER TABLE fact_order SET (autovacuum_enabled = false);
ALTER TABLE fact_order SET (parallel_workers = 4);
VACUUM (VERBOSE, ANALYZE, FULL) fact_order;

-- 更新统计信息
ANALYZE fact_order;

-- 使用查询优化器提示
EXPLAIN (ANALYZE, BUFFERS)
SELECT /*+ BitmapScan(fact_order) */
    customer_id, SUM(total_amount)
FROM fact_order
WHERE order_date BETWEEN '2024-01-01' AND '2024-12-31'
GROUP BY customer_id;

4. 安全性和访问控制

数据安全是另一个关键考虑因素。我们需要实施:

  • 行级安全性
  • 列级加密
  • 角色基础的访问控制
-- 创建角色
CREATE ROLE sales_analyst;
CREATE ROLE marketing_analyst;

-- 授予权限
GRANT SELECT ON fact_order TO sales_analyst;
GRANT SELECT ON dim_customer TO marketing_analyst;

-- 实施行级安全性
ALTER TABLE fact_order ENABLE ROW LEVEL SECURITY;

CREATE POLICY order_access_policy ON fact_order
    USING (current_user = 'sales_analyst' OR order_status = 'Completed');

-- 列级加密
ALTER TABLE dim_customer
    ALTER COLUMN email SET DATA TYPE bytea 
    USING pgp_sym_encrypt(email::text, 'secret_key')::bytea;

5. 元数据管理

好的元数据管理可以提高数据仓库的可用性和可维护性。我们可以创建一个元数据仓库来存储:

  • 数据字典
  • 数据血缘关系
  • ETL作业信息
  • 数据质量检查结果
CREATE TABLE metadata_dictionary (
    table_name VARCHAR(100),
    column_name VARCHAR(100),
    data_type VARCHAR(50),
    description TEXT,
    source_system VARCHAR(100),
    last_updated TIMESTAMP
);

INSERT INTO metadata_dictionary VALUES
('fact_order', 'order_id', 'BIGINT', '订单唯一标识符', 'ERP系统', CURRENT_TIMESTAMP),
('fact_order', 'customer_id', 'INTEGER', '客户ID', 'CRM系统', CURRENT_TIMESTAMP),
-- ... 其他元数据

结论:从概念到现实的数据仓库之旅

通过本文,我们详细探讨了数据仓库建模的三个关键阶段:概念模型、逻辑模型和物理模型。每个阶段都有其独特的作用和挑战:

  1. 概念模型帮助我们捕获核心业务概念,为整个项目定下基调。
  2. 逻辑模型将抽象概念转化为具体的数据结构,为实施提供蓝图。
  3. 物理模型考虑实际的技术约束和性能需求,将设计落地为可执行的数据库结构。

在实际项目中,这三个阶段并非孤立的步骤,而是一个迭代和反馈的过程。随着对业务的深入理解和技术的不断演进,我们可能需要多次调整和优化我们的模型。

记住,一个成功的数据仓库不仅仅是良好的模型设计,还需要考虑ETL流程、数据质量、性能优化、安全性和元数据管理等多个方面。只有将这些因素综合考虑,我们才能构建一个真正满足业务需求、高效可靠的数据仓库系统。

最最后,让我们回顾一下数据仓库建模的关键点,并为数据工程师和架构师提供一些实践建议:

关键要点回顾

  1. 概念模型是最抽象的层次,focus on 业务概念和关系,不涉及技术细节。
  2. 逻辑模型进一步细化数据结构,定义实体、属性和关系,但仍保持技术中立。
  3. 物理模型考虑具体的数据库系统,实现实际的表结构、索引和优化策略。
  4. 三种模型形成了一个从抽象到具体的连续体,每一步都对最终的数据仓库实现至关重要。
  5. 除了模型设计,成功的数据仓库还需要考虑ETL、数据质量、性能优化、安全性和元数据管理等方面。

实践建议

  1. 保持模型的一致性: 确保概念模型、逻辑模型和物理模型之间保持一致。任何一个层面的变更都应该考虑对其他层面的影响。

  2. 迭代优化: 数据仓库建模是一个迭代的过程。随着对业务的深入理解和需求的变化,不断优化和调整你的模型。

  3. 关注数据质量: 在模型设计的每个阶段都要考虑数据质量。定义清晰的数据规则和约束,并在ETL过程中实施严格的数据质量检查。

  4. 性能与可用性平衡: 在追求查询性能的同时,也要考虑模型的可理解性和可维护性。过度的性能优化可能会导致模型变得复杂难懂。

  5. 文档化: 详细记录你的设计决策、数据定义和业务规则。好的文档可以大大提高数据仓库的可用性和可维护性。

  6. 考虑未来扩展: 在设计时要考虑到未来可能的需求变化和数据增长。预留一些灵活性,以便未来能够更容易地进行扩展和调整。

  7. 重视安全性: 从一开始就将数据安全纳入考虑范围。实施适当的访问控制,保护敏感数据。

  8. 持续监控和优化: 数据仓库不是"一次性"工程。持续监控其性能和使用情况,并根据实际情况进行优化。

结语

数据仓库建模是一门艺术,也是一门科学。它需要我们既能够从高层次理解业务需求,又能深入技术细节解决实际问题。通过掌握概念模型、逻辑模型和物理模型这三个层次的设计,我们就拥有了构建强大、灵活、高效数据仓库的基础工具。

记住,最好的模型是那些能够有效支持业务决策,同时又易于理解和维护的模型。它应该是业务需求和技术可能性的完美平衡。作为数据工程师或架构师,我们的目标就是创造这样的平衡,为组织提供真正的数据价值。

希望这篇文章能够帮助你更好地理解数据仓库建模的过程,并在实践中创建出优秀的数据仓库解决方案。数据的世界永远充满挑战和机遇,让我们继续学习,不断探索,用数据为世界创造更多价值!
数据仓库.png

  • 19
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据小羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值