- 博客(102)
- 资源 (1)
- 收藏
- 关注
原创 postgresql 重置对应表序列最大值
然后上面虽然一个表搞定了,但我想对所有表都操作一次,那么使用如下脚本,可以在navicat等工具里直接新建查询,粘贴进去执行一下就好了(实测pg17一次解决)。原因是,insert语句如果默认写了id,就不会更新序列的值,需要自己拨一下序列的值…注:这里 _id_seq 你要看是否和自己的数据库一样,一般默认都用的这个。简单来说如下命令就好了,两个your_table 换成你自己的真实表名。当使用pg库备份并恢复时,序列的值很可能不会自动更新到最大ID。
2025-03-29 17:25:35
365
原创 增加Swap文件提升ECS云主机可用内存防止OOM
在 Linux 上增加 Swap 内存可以通过以下几种方式实现,具体方法取决于你的需求(如增加 Swap 文件或扩展 Swap 分区)。表示创建 4GB 大小的 Swap 文件,你可以根据需要调整大小。保存并退出后,Swap 文件将在系统重启后自动启用。(CentOS8,增加 Swap 文件为例):该方案适用于任何情况,操作简单,无需重启。
2025-03-26 11:45:04
225
原创 从WorkTool看RPA技术演进——移动端自动化的未来趋势
西安交大提出的两阶段框架,通过视觉解析UI并生成自然语言描述,由LLM拆解任务步骤,在147个真实任务中达到人类水平完成率。:支持鸿蒙/安卓双平台,通过视觉模型+ADB实现跨APP操作(如微信自动回复+小红书评论),任务成功率比单设备方案提升40%。:多Agent协作框架,订座任务中通过“视觉感知-Agent-执行器”链路实现端到端操作,意图理解准确率91%。:港大研发的纯视觉方案,无需后台数据支持,在AndroidWorld基准测试中超越Claude 3.5。
2025-03-12 11:03:17
908
原创 WorkTool 技术解析:企业微信自动化办公的合规实现方案
随着企业微信用户规模突破4亿(据腾讯2023年财报),其开放生态催生了自动化办公的技术需求。传统RPA(机器人流程自动化)工具在PC端已广泛应用,但移动端自动化仍面临技术合规性、系统兼容性等挑战。本文将探讨基于Android无障碍服务的自动化方案——WorkTool的技术原理与合规边界,为开发者提供实现参考。
2025-03-12 10:37:29
1028
原创 免root运行python保活守护进程supervisor
在没有root权限的情况下,仍可以安装和使用 Python 守护进程管理工具(如supervisor保活守护进程)
2025-03-06 15:52:15
962
原创 大模型与图数据库RAG通俗流程拆解
# 模型- 向量化模型 bce-embedding-base_v1- 重排序模型 bce-reranker-base_v1- 大语言模型 Qwen/Qwen2.5-32B-Instruct- 图数据库 tugraph- 索引 faiss# 核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目[茴香豆](https://github.com/tpoisonooo/HuixiangDou2)。以下是调用链的梳理,确保不遗漏任何步骤
2025-03-03 18:48:48
740
原创 排查和解决线程池瓶颈问题案例
日志分析:通过日志分析发现线程池的瓶颈。代码审查:确认@Async注解默认使用的线程池配置。自定义线程池:通过自定义配置增加线程池的线程数,提升并发处理能力。验证效果:通过日志和性能监控验证优化效果。希望这个案例能够帮助大家在遇到类似问题时,快速定位并解决问题。如果你有类似的经验或其他优化方案,欢迎在评论区分享!
2025-02-26 22:27:14
261
原创 1Panel快速轻量应用项目启动最佳实践
在本最佳实践中,我们采用 1Panel + Docker Compose + Cursor 的技术组合来实现快速且可靠的应用部署。
2025-02-22 17:17:22
516
原创 selenium浏览器下载汇总
官网:https://googlechromelabs.github.io/chrome-for-testing/下载chrome win64位:https://storage.googleapis.com/chrome-for-testing-public/131.0.6778.85/win64/chrome-win64.zip。
2024-12-27 15:16:04
563
原创 【监控】夜莺监控系统各环节资源压力分析
夜莺监控系统由多个关键组件构成,每个环节都面临不同的资源压力。采集端 Categraf 作为轻量级 agent,内存占用仅 30-50MB,主要压力来自采集频率和指标数量。传输层 Transfer 需要处理大量并发数据,通常消耗 1-2GB 内存,关键在于数据队列处理。索引服务 Index 负责元数据管理,需要 4-8GB 内存支持索引缓存。时序数据库 TSDB 是最消耗资源的组件,通常需要 8GB 以上内存,磁盘 IO 压力很大。告警模块消耗 2-4GB 内存,主要用于规则计算。
2024-12-24 21:11:14
483
原创 Linux Docker环境中解决中文字体乱码问题完整指南
在Linux Docker环境中运行涉及中文显示的应用时(如Selenium网页截图、PDF生成等),经常会遇到中文显示为方块或乱码的问题。这是因为Linux系统默认没有安装中文字体所导致的。我们可以从Windows系统复制常用中文字体到Docker容器中来解决这个问题。
2024-12-16 17:37:05
1184
原创 CentOS8或docker镜像centos8更换镜像源
因为 CentOS 8 已经结束生命周期,原来的镜像源不可用了。我们需要将镜像源改为 CentOS 8 的替代源。
2024-12-12 20:46:14
1953
原创 Linux离线安装docker(arm64架构cpu)极速版
之前写过x86版本的快速docker安装部署,现在遇到arm64等架构cpu不适用,主要是因为安装包不通用,因此有这篇文章。cpu测试可以支持鲲鹏cpu或interl arm版本离线安装docker,10分钟极速搞定!亲测适用于CentOS8 及其衍生版本。
2024-11-28 14:29:48
795
原创 快速构建fastapi环境容器
我们经常需要启动一个简单的python网络程序,并提供api端口,下面进行一个简单的Python容器环境制作(依赖列表可按需增减)
2024-11-27 16:01:36
326
原创 YOLOv10模型训练深度解析:优化策略与实践心得
在计算机视觉领域,YOLO (You Only Look Once) 系列一直是目标检测的标杆。随着YOLOv10的发布,我们迎来了更强大、更灵活的检测模型。本文将深入探讨YOLOv10的训练过程,分享一些优化策略和实践心得。YOLOv10的训练是一个复杂而有趣的过程。通过精心的数据准备、超参数调优和训练策略优化,我们可以充分发挥这个强大模型的潜力。当然其也有定位,就是适合做图像物体检测任务,而对单标签图像分类任务还是使用其他模型,如efficientnet等。
2024-10-16 17:12:17
1121
1
原创 AI异常检测方案实施-基于基准块的无监督学习
上文讲到AI异常检测的几种方案规划,点击查看由于我们只有“正确答案”,因此当前最符合的做法是使用autoencoder做无监督学习。
2024-09-30 11:31:17
1003
原创 ollama自定义模型容器部署(cpu版)
使用GPU需要安装 NVIDIA Container Toolkit: https://hub.docker.com/r/ollama/ollama。如果想使用Qwen2.5-7B模型,可以在这个模型页选择适合自己算力需求的模型下载。ollama create #从模型文件创建模型。ollama pull #从注册表中拉取模型。ollama serve #启动ollama。ollama run #运行模型。
2024-09-21 10:55:51
1684
原创 ollama+LLM llama3.1 部署教程(cpu版)
使用GPU需要安装 NVIDIA Container Toolkit: https://hub.docker.com/r/ollama/ollama。有些大佬已经把几乎所有主流开源模型的gguf量化模型都整理好了,比如https://hf-mirror.com/bartowski。如果想使用Qwen2.5-7B模型,可以在这个模型页选择适合自己算力需求的模型下载。ollama create #从模型文件创建模型。ollama serve #启动ollama。
2024-09-20 10:22:21
669
原创 FunASR搭建语音识别服务和VAD检测
该服务使用阿里达摩院的模型,并支持SSL连接、2pass模式以及语音热词处理。你还需要从阿里云上下载相关的语音识别模型、VAD模型、标点符号模型等。这些模型是由达摩院发布的,具体的模型目录稍后会在启动命令中给出。这样,你的VAD模型将在600毫秒后检测到结束静音,适用于需要更快速响应的语音识别场景。的VAD参数,你可以根据具体需求定制VAD的检测灵敏度和时长。这些参数控制了VAD的静音检测、语音与噪音之间的比率等。这里需要确保你的客户端主机和端口设置正确,并且使用的是2pass模式。
2024-09-10 20:53:30
4387
3
原创 使用Python写一个适用于Dify和FastGPT的JsonPath插件
通过上述步骤,我们实现了一个简单但功能强大的 JsonPath 插件,适用于 Dify 和 FastGPT。它可以处理 JSONPath 查询、正则表达式提取以及 JavaScript 沙盒执行等任务。希望这篇文章能帮助你更好地理解如何构建类似的插件,并将其应用到你的项目中。如果你有任何问题或建议,欢迎在评论区留言讨论。
2024-08-31 09:43:39
1229
原创 在 Docker 中配置 npm 和 pnpm 使用镜像源
在 Docker 中构建前端应用时,使用 npm 或 pnpm 安装依赖是必不可少的步骤。为了解决这个问题,我们可以配置 npm 和 pnpm 使用国内的淘宝镜像源。在 Docker 中构建 Node.js 应用时,配置 npm 和 pnpm 使用国内的镜像源,可以显著提高依赖安装的速度和稳定性。通过这些配置,你将能够在网络环境受限的情况下,依然快速、高效地构建你的前端应用。如果你需要绕过网络限制,可以通过设置代理服务器的方式来强制 npm 和 pnpm 请求通过代理。,这是由于锁定文件或缓存的影响。
2024-08-30 17:26:43
4261
原创 在 Maven 的 POM 文件中配置 npm 镜像源
在使用 Maven 构建前端项目时,可能会遇到网络问题,导致 Node.js 或 npm 依赖无法下载,特别是在国内网络环境中。如果你在使用插件来管理 Node.js 和 npm,那么通过配置镜像源可以有效解决这些问题。本文将介绍如何在 Maven 的pom.xml文件中配置 npm 镜像源。
2024-08-30 16:55:52
1391
原创 项目代码全自动国际化翻译工具
"项目代码国际化翻译工具"不仅是我们团队的一次成功实践,也是我们对开发工作的一次深刻总结。通过这个项目,我们不仅解决了自身的需求,也为其他开发者提供了一种高效的解决方案。在全球化的时代背景下,软件的国际化将变得越来越重要。我们希望通过这个工具,帮助更多的开发者轻松应对多语言支持的挑战,让每一个项目都能够在世界的舞台上发光发热。如果你对我们的工具感兴趣,欢迎下载体验,并与我们分享你的使用心得和建议。让我们共同努力,推动软件开发的国际化进程!
2024-08-16 12:46:06
1082
原创 Linux极速离线安装Docker Compos
以上步骤展示了如何在CentOS系统上离线安装Docker Compose,并进行基本的配置和验证。通过这种方式,即使在没有网络连接的环境中,你也可以轻松地安装和使用Docker Compose来管理容器应用。希望这篇教程对你有所帮助!
2024-08-15 09:38:05
426
原创 Linux离线安装docker极速版
以上步骤展示了如何在CentOS系统上离线安装Docker Compose,并进行基本的配置和验证。通过这种方式,即使在没有网络连接的环境中,你也可以轻松地安装和使用Docker Compose来管理容器应用。希望这篇教程对你有所帮助!
2024-08-10 17:18:12
497
原创 使用FRP进行linux服务器和linux客户端之间的内网穿透
使用 FRP (Fast Reverse Proxy) 进行 CentOS 7 服务器和 Ubuntu 客户端之间的内网穿透的标准操作程序 (SOP),亲测可用,一次完成。此命令会通过 FRP 隧道将 SSH 请求从 CentOS 服务器转发到 Ubuntu 客户端,从而实现内网穿透。这样配置完成后,每次服务器和客户端启动时,FRP 服务端和客户端也会自动启动并连接,从而实现持续的内网穿透。在 Ubuntu 客户端上设置 FRP 客户端自动启动。在 Ubuntu 客户端上安装 FRP 客户端。
2024-08-06 22:46:50
573
1
原创 centos服务器fail2ban部署指南标准流程
Fail2Ban的默认配置文件在/etc/fail2ban/jail.conf,但不建议直接编辑这个文件。/etc/fail2ban/jail.local的优先级默认更高,无需指定路径。创建或编辑过滤器文件 /etc/fail2ban/filter.d/nginx-errors.conf,添4xx、5xx错误码。Fail2Ban会使用iptables来禁止IP地址。确保你的防火墙允许Fail2Ban添加规则。重启fail2ban生效。
2024-07-03 00:56:03
662
原创 确保数据可视化的准确性:后校验的重要性和方法
在数据可视化项目中,选择合适的图表类型并确定数据字段是首要步骤,但这些步骤本身并不能保证最终的图表能够有效地传达正确的信息。数据的质量和特性可能会影响图表的解释性和准确性。因此,进行后校验以确保数据的适用性和一致性对于避免误导观众和提升决策质量至关重要。本文将探讨在数据可视化中实施后校验的方法,以确保图表不仅美观,而且准确无误。正文后校验的必要性数据可视化的目的是清晰和准确地传达数据洞察。无论技术多么高级,如果图表基于错误或不适当的数据,其结果可能会误导决策者。数据完整性问题,如缺失值或异常值。
2024-05-15 23:22:55
685
原创 监控工具对比分析报告:Zabbix与Prometheus
Zabbix是一个成熟的全功能企业级监控解决方案,提供从数据收集到报警的一站式服务。它支持多种监控方式,包括通过SNMP、IPMI、JMX、SSH和特定的代理进行监控,适合传统的IT和网络设备监控。Prometheus则是一个开源监控系统,专为云原生应用设计,特别强调可扩展性和简洁性。它主要通过拉取(pull)模式收集监控指标,适用于微服务架构中的动态环境。
2024-05-08 13:45:36
794
原创 数据可视化准备:动态识别echarts的横纵坐标数据字段
继上一篇文章自动选择图表类型:基于数据特征智能决策分析了如何根据sql和数据结果判断应该自动使用哪种图表类型,本文继续将图表的x轴和y轴横纵坐标识别出来,基本一个二维数据类普通图表就可以直接输出为echarts参数了。在数据可视化领域,正确识别哪些字段应该作为X轴(通常代表分类或时间序列数据)和Y轴(通常代表度量或数值数据)是确保图表正确表达信息的关键步骤。
2024-05-07 19:45:02
777
原创 自动选择图表类型:基于数据特征智能决策
在数据可视化的世界中,选择正确的图表类型对于有效地传达信息至关重要。图表类型的选择不仅影响数据的呈现方式,而且直接影响观众对数据的理解。自动选择图表类型可以大大简化数据分析的流程,尤其是在处理动态源或大量数据集时。本文将探讨如何根据数据的特征和字段语义自动选择最合适的图表类型,确保信息的有效传达。自动选择图表类型不仅提高了数据可视化的效率,还确保了数据以最适合的形式展示,从而最大化信息的传递效果。
2024-05-07 19:25:46
900
原创 基于ollama和CPU运行本地gguf量化模型
本文先以Windows电脑运行为例,Linux同理本案运行配置:Win11/CPU i5/RAM 32G (实际运行使用约占用10G)假设你已经下载好了需要的xxx.gguf模型文件,本案:下载地址:https://huggingface.co/TheBloke/WizardCoder-Python-13B-V1.0-GGUF。
2024-04-10 19:55:27
3671
原创 Neo4J图数据库入门示例
Neo4j 和 MySQL 是两种不同类型的数据库,它们在数据模型、用途、性能和查询语言等方面有着显著的区别。以下是它们的主要区别:Neo4j 是一种图数据库,它使用图数据模型来存储和查询数据。在图数据库中,数据以节点(实体)和边(关系)的形式存在。这种模型非常适合表示和查询复杂的关系网络,如社交网络、推荐系统、欺诈检测等。MySQL 是一种关系型数据库管理系统(RDBMS),它使用表格数据模型。数据以行和列的形式存储在表中,表之间通过外键关系相连。这种模型适合处理结构化数据,如客户信息、订单记录等。
2024-03-08 17:48:33
1013
1
原创 深入探讨开源对话系统:IntelliQ的世界
IntelliQ是一个开源项目,它结合了最新的自然语言处理技术,致力于提高对话系统的性能。通过多轮对话管理,这个系统能够处理复杂的对话场景,并支持连续的多轮交互。这不仅增强了系统的实用性,也为用户提供了更加流畅和自然的交流体验。IntelliQ不仅是一个开源项目,更是一个探索人机交互未来的窗口。对于开发者来说,这是一个机会,可以在这个项目的基础上构建更加先进的应用。对于热爱技术的人来说,这是一个学习的平台,可以通过实践来深入理解大型语言模型和自然语言处理的技术。
2023-12-22 00:50:59
1119
1
原创 大模型(LLM)+词槽(slot)构建动态场景多轮对话系统
IntelliQ旨在创建一个灵活的聊天机器人框架,能够处理多种不同的对话场景。通过结合大型语言模型的强大理解能力和基于词槽的精确信息提取,我们的系统可以在各种场景中有效地与用户进行交互,例如天气查询、旅行预订等。核心特性动态场景处理:轻松添加和修改对话场景,无需改动核心代码。插件式架构:每个场景都有独立的处理器,方便扩展和维护。自然语言理解:利用大型语言模型处理复杂的用户输入。词槽填充机制:精确地从用户输入中提取必要信息。
2023-12-18 23:14:59
5882
7
原创 Gradle问题解决 Unable to make field private final java.lang.String java.io.File.path accessible: module
4、5、项目的 JDK 版本,这个可以看看项目配置里的 Java 有没有设置对,clone 的项目是 jdk1.8 查看项目配置是一致的,跳过。如果问题是由于 Gradle 运行时的 Java 模块系统安全性造成的,您可以尝试修改 Gradle 的 JVM 参数。目前没有发现能实质性推进的改动。如果仍然遇到问题,请提供更多的上下文信息,如错误发生时的具体情况,以及您正在使用的 Android Studio。如果您无法修改代码(比如它是第三方库的一部分),您可能需要联系库的维护者以获取帮助或者查找替代的库。
2023-12-10 16:38:30
11856
3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人