LSTM神经网络实战 --- Python实现LSTM预测销量

64 篇文章 ¥9.90 ¥99.00
本文通过Python实现了一个基于LSTM的销量预测模型,利用Keras和Tensorflow库。数据集包含日期、星期、节假日信息,目标是预测销量。模型设定为每次预测一个值。文章详细介绍了数据处理、模型构建、训练、预测、保存和评估的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预测模型,这里使用LSTM来进行预测,利用Keras使用内置的Tensorflow。

使用的数据为XXXX的销量数据。

使用

特征是日期、星期、是否是节假日、销量;

预测的目标特征是销量;

这个模型由于我设置预测的参数和输入的数据目标列是1,所以每次预测结果是一个值。

其实各模块如下:

模型中使用参数列表说明如下:

"""
模型参数说明:
path=path,         数据源文件路径
start_row=0,       数据开始的行号
end_row=454,       数据结束的行号
start_col=1,       选取的开始的列
end_col=4,         选取的结束的列
features=features,      筛选的特征
dis_features=dis_features,    离散的特征
seq_features=seq_features,    连续线性的特征
sheet_name=0,       excel的sheet名字
header=0,           excel中是否选取header
index_col=None,     excel是否选取固定列
step=7,             步长
target_index=0,     目标特征
seq_target_index=0, 线性目标特征索
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨鑫newlfe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值