学习总结
文章平均质量分 60
Scandy-Wang
本人在读小硕一枚,研究方向为计算机视觉、机器学习以及压缩感知。
展开
-
显著检测学习总结6
显著检测——SUN Zhang在2008年的Journal ofVision上发表了基于自然统计规律的贝叶斯显著检测。此方法和之前的AIM有着很大的相似性,是AIM的升级版。从贝叶斯的角度建立起推理模型之后,借助于已有的自然图像自然统计规律来量化每个位置的显著性。与AIM最大的不同或许在于概率密度的估计,SUN用广义高斯分布来拟合自然图像的统计规律,并将所得统计规律推广到测试图像原创 2013-12-28 23:30:13 · 1081 阅读 · 0 评论 -
显著检测学习总结1
显著检测——“Hello World!” 最近在学习显著检测方面的内容,一直想对所学内容进行梳理并与大家分享,以便能相互学习交流。本篇先从1998年PAMI上Itti发表的那篇开山之作开始吧。 Itti的显著检测基于生物学中的视觉认知模型,通过模拟灵长类动物对于颜色、亮度和方向信息在局部范围差异的敏感性来判断显著性,它的主要理论依据是: 1.灵长类动物的神经元对于被亮区域原创 2013-12-26 17:41:18 · 1292 阅读 · 0 评论 -
显著检测学习总结4
显著检测——Graph-Based VisualSaliency Harel等人2006年在NIPS上发表了一篇基于图的显著检测的文章,这篇文章基于Itti方法的基本框架和原理,同时又用马尔科夫随机场的模型来模拟人在观察图像时复杂的视觉转移过程,取得了很好的效果。文章的出发点很新颖,而且和生物的视觉注意方式有着很强的相似性,在现有方法中是一种有代表性的方法。 文章将原创 2013-12-27 22:52:44 · 991 阅读 · 0 评论 -
显著检测学习总结3
显著检测—Context-Aware 基于上下文的显著检测是Goferman于2010年提出的一种新的显著检测概念,它和之前的Itti的显著性的定义有一定区 别。 他认为在诸如图像分类的任务中我们不但要关注显著的物体而且也要关注到部分的能够传递文本信息的背景。 人眼在关注显著区域的同时也会顺带关注其周围的部分背景区域以获得对整幅场景的文本认知。 基于上下文的显著检测所基原创 2013-12-27 12:19:21 · 1159 阅读 · 0 评论 -
显著检测学习总结5
显著检测——Information Maximization 本篇对Bruce等人在NIPS上发表的基于信息最大化的显著检测的文章做一简单的总结。这篇文章从信息论的角度来探讨显著性,在整幅图像中按照各位置局部范围所包含的信息多少量化显著程度。由于图像块的概率密度空间在很高的维度上,仅仅凭借测试图像的数据不足以满足统计需求。作者运用机器学习中的ICA方法在大量自然图像块中选原创 2013-12-28 11:56:30 · 958 阅读 · 0 评论