显著检测—Context-Aware
基于上下文的显著检测是Goferman于2010年提出的一种新的显著检测概念,它和之前的Itti的显著性的定义有一定区别。他认为在诸如图像分类的任务中我们不但要关注显著的物体而且也要关注到部分的能够传递文本信息的背景。人眼在关注显著区域的同时也会顺带关注其周围的部分背景区域以获得对整幅场景的文本认知。
基于上下文的显著检测所基于的原理:
1.局部底层特征,包括对比度和颜色,对于显著性的影响。
2.全局的考量,将出现频率较高的特征压缩而保留有独特结构的部分。视觉中存在稀疏特性,在编码时花更多的代价去处理有较丰富信息的区域。
3.视觉组织规则表明视觉形式可以拥有一个或者多个中心,即视觉形式是一种分布式的结构。
4.高层的对于显著物体的位置和类型的先验信息对于显著检测至关重要。这种形式的信息可以认为是一种Top-down的有监督学习模型,在获得显著物体的样本情况下可以指导显著检测。
模型框架:
在特定的层次下用局部块来表示各位置所蕴含的结构信息,对于每一个块寻找与之相近的K个近邻,作为显著性的竞争对象。利用如下公式来描述块与块在位置和颜色信息综合作用之下的不相似程度。
每一个块的显著程度最后是由以上K个度量值按照下面的公式综合而得到的,这在平均的不相似度和显著性之间建立起了一种渐进的关系。
在多个块规模之下重复以上过程,实现在不同层次上对显著性的度量。最后将多个层次上的结果融合后便得到了第一阶段的显著图结果。
根据Gestaltlaws,在视觉注意点的附近区域会连带受到一定程度的关注,所以第二阶段旨在在以上基础上对结果做一定程度的修正。先通过阈值将所有点硬性分为显著点和非显著点,对于非显著点寻找离它最近的显著点,并按照如下的公式重新调整其显著值。
由于在拍摄照片的时候,我们往往会将显著物体放在图像的中心周围,所以每个位置相对于中心的空间距离也能对显著性起到一定程度的作用。此阶段在上一阶段的基础上进一步设计了2维高斯图来模拟此中心先验。
最后作者考察了所选参数变化时对于显著检测结果的影响和利用GPU来克服寻找K近邻过程的计算复杂度。当然,也有其余的一些讨论和应用,此处不再罗列。
实验结果
显著检测概念的扩展并没有带来更多实质上的变化,或许最本质的变化是把显著区域周围的部分背景也包括到显著区域中来了,使得显著性的定义产生了一定程度的混乱。本文还是和Itti等方法做了比较,说明其最终落脚点还是传统的显著性。本方法在很多情况下有比较好的性能,但是也不能避免对于边缘的突出方面的瑕疵。