Tensorflow深度学习-对布料工艺参数的预测

本文探讨如何利用工厂生产过程中收集的机器参数(如张力、压力、温度)和布料检测数据(颜色、克重等),通过深度学习模型预测布料的透光点,验证经验并提升生产效率。模型训练结果显示,张力、压力和温度对透光点有显著影响,证实了师傅的经验。
摘要由CSDN通过智能技术生成

研究背景:工厂生产一批布料,会对布料的整个生产环境检测记录下来,包括生产布料时的机器的张力,车速,温度,压力,机器转速等一些基本数据,生产出来的布料检测机器会对布料的参数记录,包括布料的颜色,克重,刀工,透光点等等。

那么有了这些数据,我们可以通过 深度学习 来预测 布料是否合格,应该是下面这个公式。

a+b+c+d+....=Y

根据现场生产布料的老师傅经验 ,认为可能生产机器的压力,张力,温度等对布料的透光点有重大影响,这是根据经验来判断的,显然我们需要数据支撑,需要机器模型来验证是否这样。

开搞

1.第一步 我们需要把检测机器记录的历史数据 整理归纳,导出到 csv 文件,方便 我们下一步处理,记录数据用的mongodb 数据库。我们 用python 导出到 csv文件,我们需要 一个透光点值和 对应的张力,压力,温度值。

import pymongo
import json
import csv
import os
from dateutil.parser import *

#################
stime       = '2022-03-02 00:00:00' #开始时间
etime       = '2022-03-10 00:00:00' #结束时间
b_path      = 'b_train.csv';        #写入的文件
mongo_name  = 'tensorflow'          # 数据库名称
line_name   = '三号产线DeviceHisData' #产线名称
line_code   = 'U306'                #产线code
cut_code    = 'A302'                #cut code
#####################
client = pymongo.MongoClient(host='localhost', port=27017)
db     = client[mongo_name]
#写入数据

if os.path.exists('b_path'):
    os.makedirs(b_path)

#时间范围 先生成数据
myDatetime  = parse(stime)
myDatetime2 = parse(etime)

lin306  = db[line_name].find({'code':line_code,'TimeData': {'$gte':myDatetime,'$lt':myDatetime2}},{"_id": 0,'line':1,'value':1,'code':1,'TimeData':1}).sort("TimeData")   #查询全部
cuts    = db['cutscreendataHis'].find({'type': 'Data','code':cut_code,'Begintime': {'$gte':myDatetime,'$lt':myDatetime2}},{"_id": 0,'type':1,'code':1,'dataCnc':1,'data':1,'Begintime':1}).sort("Begintime") #查询全部

dianshu = []
for line in lin306:  #循环打印
    value    = json.loads(line['value'])
    TimeData = line['TimeData'].strftime("%Y-%m-%d %H:%M:%S")
    dianshu.append(value)

#print("dianshu==",dianshu)
colors_len = len(dianshu)
print("colors_len",colors_len)

### 中间省略 for循环处理数据
    
with open(b_path, 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerows(lists)

print("-----------导出csv完成------------")

   导出的csv 文件数据如下,总共5000多数据:        

     

2.第二步 数据预处理,通过 pandas 读取 b_train.csv文件。

dataset_path = 'b_train.csv'

column_names = ['dianshu','a','b','c','d','e','f']
                #'o','p','q','r','s','t','u','v','w','x','y','z',
              #'ab','ac','ad','ae','af','ag']

raw_dataset = pd.read_csv(dataset_path,
                      na_values = "?", comment='\t', names=column_names,
                      sep=",", skipinitialspace=True)
dataset = raw_dataset.copy()

#数据清洗 去掉没用值
dataset.isna().sum()
dataset = dataset.dropna()

#打印数据详情
print("dataset.tail() ",dataset.tail());

3.第三步 分出训练数据80%和测试数据20%  并把数据 归一化处理。

#分离数据 80% 训练, 20%测试
train_dataset = dataset.sample(frac=0.8,random_state=0)
test_dataset  = dataset.drop(train_dataset.index)


#sns.pairplot(train_dataset[['dianshu', 'a', 'b']], diag_kind="kde")
#plt.show() #生存图片


#总体的数据统计:
train_stats = train_dataset.describe()
train_stats.pop("dianshu")
train_stats = train_stats.transpose()
#数据详情


test_result = test_dataset['dianshu']
train_labels = train_dataset.pop('dianshu')
test_labels  = test_dataset.pop('dianshu')

#归一化处理
def norm(x):
  return (x - train_stats['mean']) / train_stats['std']

normed_train_data = norm(train_dataset)
normed_test_data  = norm(test_dataset)

4. 开始建模,我们损失函数需要用到 loss = ‘mae’这个,即平均绝对误差它表示预测值和观测值之间绝对误差的平均值。这个适用于我们的研究对象。

#开始建模训练
def build_model():
      model = keras.Sequential([
        layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
        layers.Dense(64, activation='relu'),
        layers.Dense(64, activation='relu'),
        layers.Dense(1)
      ])
      optimizer = tf.keras.optimizers.RMSprop(0.001)
      model.compile(loss='mae', #均方误差(mae)Mean Absolute Error,即平均绝对误差:它表示预测值和观测值之间绝对误差的平均值。
                    optimizer=optimizer,#adam
                    metrics=['mae', 'mse'])
      return model

model = build_model() #建立模型
model.summary() #方法来打印该模型的简单描述。

我们看下此模型的描述信息,共4层,总包括 8833 参数够我们训练5000 数据了。

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 64)                448       
_________________________________________________________________
dense_1 (Dense)              (None, 64)                4160      
_________________________________________________________________
dense_2 (Dense)              (None, 64)                4160      
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 65        
=================================================================
Total params: 8,833
Trainable params: 8,833
Non-trainable params: 0
_________________________________________________________________

5.开始训练100次,并画出训练时mean走向统计图

# 通过为每个完成的时期打印一个点来显示训练进度
class PrintDot(keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs):
    if epoch % 50 == 0: print('')
    print('.', end='')

EPOCHS = 100

history = model.fit(
  normed_train_data, train_labels,
  epochs=EPOCHS, validation_split = 0.2, verbose=0,
  callbacks=[PrintDot()])

def plot_history(history):
  hist = pd.DataFrame(history.history)
  hist['epoch'] = history.epoch

  plt.figure(1)
  plt.subplot(211)
  plt.xlabel('Epoch')
  plt.ylabel('Mean Abs Error') #平均绝对值误差
  plt.plot(hist['epoch'], hist['mae'],label='Train Error') #训练错误
  plt.plot(hist['epoch'], hist['val_mae'],label = 'Val Error') #实际错误
  plt.legend()

  plt.figure(2)
  plt.subplot(212)
  plt.xlabel('Epoch')
  plt.ylabel('Mean Square Error [$MPG^2$]') #均方误差
  plt.plot(hist['epoch'], hist['mse'],label='Train Error')
  plt.plot(hist['epoch'], hist['val_mse'], label = 'Val Error')
  plt.legend()
  plt.show()

  plt.figure(1)
  plt.subplot(222)
  plt.xlabel('Epoch')
  plt.ylabel('loss and val_loss ') #错误率
  plt.plot(hist['epoch'], hist['loss'],label='loss Error')
  plt.plot(hist['epoch'], hist['val_loss'], label = 'val_loss Error')
  plt.legend()
  plt.show()
plot_history(history)

这个图描述了实际值方差和训练值方差走势图,训练到100次时mean 基本在10以下了。

下面我们通过训练过的模型来预测一下测试数据的实际值和预测值的拟合程度,是否线性回归?

#预测 的结果 打印
test_predictions = model.predict(normed_test_data).flatten()


#新图 查看拟合效果图
plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values ')
plt.ylabel('Predictions')
plt.axis('equal')
plt.axis('square')
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
plt.plot([-100, 100], [-100, 100])
plt.show()

     如图基本在一条线上。

打印输出机器学习之后的预测值和实际记录值,我们发现俩个数据很接近

我们看下机器模型预测平均绝对方差值是:1.64 ,这个值很低了。说明生产布料时张力,压力,温度对布料的透光点数有很大相关性。老师傅的经验是对的,机器学习对此加强了验证。

30/30 - 0s - loss: 1.6414 - mae: 1.6414 - mse: 6.5162
Testing set Mean Abs Error:  1.64 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值