poj 1511

求从1到所有顶点的最短路,还有所有顶点到1的最短路之和。

求所有顶点到1的最短路有个技巧,就是反向建边,原先u -> v 改成v -> u

之后跑两边dijsktra就可以了。一定记得每次都要初始化邻接表G和d,INF 申请为0x3f3f3f3f,要不然会溢出

/***********************************************
 * Author: fisty
 * Created Time: 2015/2/16 22:43:27
 * File Name   : J.cpp
 *********************************************** */
#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF=0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
#define MAX_N 1000100
int N, M;
struct node{
    int to;
    int cost;
    node(int _to, int _cost):to(_to), cost(_cost){}
};
vector<node> G[MAX_N];
LL d[MAX_N];
int u[MAX_N], v[MAX_N], cost[MAX_N];

void dijsktra(){
    for(int i = 0;i <= N; i++){
        d[i] = INF;
    }
    d[1] = 0;
    priority_queue <P, vector<P>, greater<P> > que;
    while(que.size()) que.pop();
    que.push(P(0, 1));
    while(que.size()){
        P q = que.top(); que.pop();
        int v = q.second;
        for(int i = 0;i < G[v].size(); i++){
            node &e = G[v][i];
            //Debug(e.to);
            if(d[e.to] > d[v] + e.cost){
                que.push(P(d[e.to], e.to));
                d[e.to] = d[v] + e.cost;
            }
        }
    }
}
void init(){
    FOR(i, 1, N+1){
        G[i].clear();
    }   
}
int main() {
    //freopen("in.cpp", "r", stdin);
    cin.tie(0);
    ios::sync_with_stdio(false);
    int t;
    cin >> t;
    while(t--){
        cin >> N >> M;
        init();
        for(int i = 0;i < M; i++){
            cin >> u[i] >> v[i] >> cost[i];
            G[u[i]].push_back(node(v[i], cost[i]));
        }
        dijsktra();
        LL ans = 0;
        FOR(i, 2, N+1) ans += d[i];
        
        init();
        FOR(i, 0, M){
            G[v[i]].push_back(node(u[i], cost[i]));   
        }
        dijsktra();
        FOR(i, 2, N+1) ans += d[i];
        cout << ans << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值