HDU 2883kebab(网络流之最大流)

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=2883

对网络流的信心正在慢慢找回来,对网络流建图越来越有感觉了。一天一道题,天天好心情。

话说这题其实并不是完全是自己想出来的。建图思路基本对,但是有一个技巧没想到,是看的题解。因为给出的时间的数据范围太大,要按正常思路建图的话太大了。。但是因为人的范围最大是200,所以给出的时刻最多也就400个,可以利用这400个来建图。每个时间区间内都可以化成一个。这样数据范围就小多了。

建图思路是:设一源点与汇点,先将输入的时刻保存下来并排序,这样就分成了一个个的时间区间,然后将每个人与源点相连,权值为这个人总共需要的时间(肉*每块肉的时间),再将人与在这个人的时间范围之内的时间区间相连,权值为INF。最后再将每个时间区间与汇点相连,权值为这个时间段的时间*每个时刻可以烘烤的最大肉数。最后求是否满流。

代码如下:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <algorithm>

using namespace std;
const int INF=1e9;
int head[1000], s, t, nv, sum, cnt, _hash[1100000];
int num[700], d[700], pre[700], cur[700], q[700], time[700];
struct node
{
    int u,v, cap, next;
}edge[10000000];
struct tourist
{
    int s, n, e, t;
}ren[1000];
void add(int u, int v, int cap)
{
    edge[cnt].v=v;
    edge[cnt].cap=cap;
    edge[cnt].next=head[u];
    head[u]=cnt++;

    edge[cnt].v=u;
    edge[cnt].cap=0;
    edge[cnt].next=head[v];
    head[v]=cnt++;
}
void bfs()
{
    memset(num,0,sizeof(num));
    memset(d,-1,sizeof(d));
    int f1=0, f2=0, i;
    d[t]=0;
    num[0]=1;
    q[f1++]=t;
    while(f1>=f2)
    {
        int u=q[f2++];
        for(i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(d[v]==-1)
            {
                num[d[v]]++;
                d[v]=d[u]+1;
                q[f1++]=v;
            }
        }
    }
}
int isap()
{
    memcpy(cur,head,sizeof(cur));
    bfs();
    int flow=0, u=pre[s]=s, i;
    while(d[s]<nv)
    {
        if(u==t)
        {
            int f=INF, pos;
            for(i=s;i!=t;i=edge[cur[i]].v)
            {
                if(f>edge[cur[i]].cap)
                {
                    f=edge[cur[i]].cap;
                    pos=i;
                }
            }
            for(i=s;i!=t;i=edge[cur[i]].v)
            {
                edge[cur[i]].cap-=f;
                edge[cur[i]^1].cap+=f;
            }
            flow+=f;
            u=pos;
        }
        for(i=cur[u];i!=-1;i=edge[i].next)
        {
            if(d[edge[i].v]+1==d[u]&&edge[i].cap)
            {
                break;
            }
        }
        if(i!=-1)
        {
            cur[u]=i;
            pre[edge[i].v]=u;
            u=edge[i].v;
        }
        else
        {
            if(--num[d[u]]==0) break;
            int mind=nv;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(mind>d[edge[i].v]&&edge[i].cap)
                {
                    mind=d[edge[i].v];
                    cur[u]=i;
                }
            }
            d[u]=mind+1;
            num[d[u]]++;
            u=pre[u];
        }
    }
    return flow;
}
int main()
{
    int n, m, i, top, j, x;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(head,-1,sizeof(head));
        memset(_hash,0,sizeof(_hash));
        cnt=0;
        sum=0;
        top=0;
        for(i=1;i<=n;i++)
        {
            scanf("%d%d%d%d",&ren[i].s,&ren[i].n,&ren[i].e,&ren[i].t);
            sum+=ren[i].n*ren[i].t;
            if(!_hash[ren[i].s])
            {
                time[top++]=ren[i].s;
                _hash[ren[i].s]=1;
            }
            if(!_hash[ren[i].e])
            {
                time[top++]=ren[i].e;
                _hash[ren[i].e]=1;
            }
        }
        sort(time,time+top);
        s=0;
        t=n+top;
        nv=t+1;
        for(i=1;i<=n;i++)
        {
            add(s,i,ren[i].n*ren[i].t);
            for(j=1;j<top;j++)
            {
                if(ren[i].s<=time[j-1]&&ren[i].e>=time[j])
                {
                    add(i,j+n,INF);
                }
            }
        }
        for(i=1;i<top;i++)
        {
            add(i+n,t,(time[i]-time[i-1])*m);
        }
        x=isap();
        //printf("%d\n",x);
        if(x>=sum)
        {
            printf("Yes\n");
        }
        else
        {
            printf("No\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值