贪心水题。。都从第一个开始取即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
int a[6000], b[6000];
int main()
{
int n, x, y, z, ans, i, j;
while(scanf("%d",&n)!=EOF)
{
x=y=z=0;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
memset(b,0,sizeof(b));
for(i=0;i<n;i++)
{
if(a[i]==1)
{
x++;
b[i]=x;
}
else if(a[i]==2)
{
y++;
b[i]=y;
}
else if(a[i]==3)
{
z++;
b[i]=z;
}
}
ans=min(x,min(y,z));
printf("%d\n",ans);
for(i=1;i<=ans;i++)
{
for(j=0;j<n;j++)
{
if(b[j]==i)
{
printf("%d ",j+1);
}
}
puts("");
}
}
return 0;
}
B - Queue
通过用数组记录下一个位置,分别把偶数位置与奇数位置上的填满。
偶数位置上一定是从0开始的,奇数位置一定是从一个没有出度只有入度的一个数开始的。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
int next[1100000], a[1100000], out[1100000];
struct node
{
int u, v;
}fei[1100000];
int main()
{
int n, i, j, u, v, cnt, pos;
while(scanf("%d",&n)!=EOF)
{
memset(next,-1,sizeof(next));
memset(out,0,sizeof(out));
for(i=0;i<n;i++)
{
scanf("%d%d",&fei[i].u, &fei[i].v);
next[fei[i].u]=fei[i].v;
out[fei[i].v]++;
}
cnt=1;
for(i=0;i!=-1;i=next[i])
{
if(cnt!=1&&!i) break;
a[cnt]=next[i];
cnt+=2;
}
cnt=0;
for(i=0;i<n;i++)
{
if(!out[fei[i].u])
{
pos=fei[i].u;
break;
}
}
a[0]=pos;
cnt=2;
for(i=pos;i!=-1;i=next[i])
{
a[cnt]=next[i];
cnt+=2;
}
for(i=0;i<n;i++)
{
printf("%d ",a[i]);
}
}
return 0;
}
C - Hacking Cypher
分别从前和后扫一遍记录下能整除的位置。从前往后的很好处理。
至于从后往前的,对于第k位来说,可以先预处理10^k对b的余数和以及前k位对b的余数,然后,后几位=总数-前k位表示的数*10^k。所以只要满足总数%b==(前k位表示的数%b)*(10^k%b)%b,就标明后几位表示的数可以整除b。
这样就可以在O(n)的复杂度内完成了。
表示自己真是弱渣。。看别人都一会儿就做出来了。。自己却想了半个小时才想出来。。。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
int a[1100000], b[1100000], c[1100000], d[1100000];
char s[1100000];
int main()
{
int aa, bb, i, x, len, pos, flag=0, y;
gets(s);
scanf("%d%d",&aa,&bb);
memset(a,0,sizeof(a));
memset(d,0,sizeof(d));
x=1;
c[1]=1%bb;
for(i=2;i<=1000000;i++)
{
x=x*10%bb;
c[i]=x;
}
len=strlen(s);
x=0;
y=0;
for(i=0;i<len;i++)
{
x=x*10+s[i]-'0';
x%=aa;
//printf("%d\n",x);
if(x==0)
a[i]=1;
y=y*10+s[i]-'0';
y%=bb;
b[i]=y;
}
//printf("%d\n",y);
for(i=0;i<len;i++)
{
if((LL)b[i]*c[len-i]%bb==(LL)y)
{
d[i]=1;
}
}
for(i=0;i<len-1;i++)
{
if(a[i]&&d[i]&&s[i+1]!='0')
{
pos=i;
flag=1;
break;
}
}
if(!flag)
puts("NO");
else
{
puts("YES");
for(i=0;i<=pos;i++)
{
printf("%c",s[i]);
}
puts("");
for(i=pos+1;i<len;i++)
{
printf("%c",s[i]);
}
}
return 0;
}
D - Chocolate
如果最终的面积相等的话,那么2的因子数与3的因子数一定相等。所以可以先求出2的因子数与3的因子数。然后这时候我们可以有两种操作:消去一个2或者把一个3变成2.所以这时候先把3较大的一方变成2,使得剩下的3相等,然后再消去2的因子数较大的一方使得相等。然后在判断这时候双方面积相等即可。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
int main()
{
int a1, b1, a2, b2, x2, x3, y2, y3, ans, m1, m2, n1, n2;
while(scanf("%d%d%d%d",&a1,&b1,&a2,&b2)!=EOF)
{
m1=a1;
m2=a2;
n1=b1;
n2=b2;
x2=x3=y2=y3=0;
while(!(a1%2)||!(a1%3))
{
if(a1%2==0)
{
x2++;
a1/=2;
}
if(a1%3==0)
{
x3++;
a1/=3;
}
}
while(!(b1%2)||!(b1%3))
{
if(b1%2==0)
{
x2++;
b1/=2;
}
if(b1%3==0)
{
x3++;
b1/=3;
}
}
while(!(a2%2)||!(a2%3))
{
if(a2%2==0)
{
y2++;
a2/=2;
}
if(a2%3==0)
{
y3++;
a2/=3;
}
}
while(!(b2%2)||!(b2%3))
{
if(b2%2==0)
{
y2++;
b2/=2;
}
if(b2%3==0)
{
y3++;
b2/=3;
}
}
if(x3>=y3)
{
x2+=x3-y3;
ans=x3-y3;
for(int i=0; i<x3-y3; i++)
{
if(m1%3==0) m1=m1/3*2;
else n1=n1/3*2;
}
}
else
{
y2+=y3-x3;
ans=y3-x3;
for(int i=0; i<y3-x3; i++)
{
if(m2%3==0) m2=m2/3*2;
else n2=n2/3*2;
}
}
ans+=abs(x2-y2);
if(x2>=y2)
{
for(int i=0; i<x2-y2; i++)
{
if(m1%2==0) m1/=2;
else n1/=2;
}
}
else
{
for(int i=0; i<y2-x2; i++)
{
if(m2%2==0) m2/=2;
else n2/=2;
}
}
if((LL)m1*n1!=(LL)m2*n2)
puts("-1");
else
{
printf("%d\n",ans);
printf("%d %d\n%d %d\n",m1,n1,m2,n2);
}
}
return 0;
}
E - Restoring Increasing Sequence
贪心+模拟。
从前开始,保证每个数都是大于前面那个数的最小可能值。当有一个不可能的时候。就表明不可能存在。
代码写的太挫。。。。。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
#define LL __int64
char s[110000][10];
int main()
{
int n, i, x, y, z, len, l, flag, j, k, pos;
while(scanf("%d",&n)!=EOF)
{
getchar();
flag=0;
for(i=1; i<=n; i++)
{
gets(s[i]);
}
z=0;
l=1;
s[0][0]='0';
for(i=1; i<=n; i++)
{
len=strlen(s[i]);
if(len<l)
{
flag=1;
break;
}
else if(len>l)
{
for(j=0; j<len; j++)
{
if(s[i][j]=='?')
{
if(j==0)
s[i][j]='1';
else
s[i][j]='0';
}
}
}
else
{
int f=0, ff=0;
for(j=0; j<len; j++)
{
if(s[i][j]!='?')
{
if(s[i][j]>s[i-1][j])
{
ff=1;
for(k=0; k<j; k++)
{
s[i][k]=s[i-1][k];
}
for(k=j+1; k<len; k++)
{
if(s[i][k]=='?')
{
s[i][k]='0';
}
}
break;
}
else if(s[i][j]<s[i-1][j])
{
ff=1;
if(!f)
{
flag=1;
break;
}
else
{
pos=-1;
for(k=j-1; k>=0; k--)
{
if(s[i][k]=='?'&&s[i-1][k]!='9')
{
s[i][k]=s[i-1][k]+1;
pos=k;
break;
}
}
if(pos==-1)
{
flag=1;
}
else
{
for(k=0; k<pos; k++)
{
s[i][k]=s[i-1][k];
}
for(k=pos+1; k<len; k++)
{
if(s[i][k]=='?')
{
s[i][k]='0';
}
}
}
}
break;
}
}
else
f=1;
}
if(ff==0)
{
pos=-1;
for(j=len-1;j>=0;j--)
{
if(s[i][j]=='?'&&s[i-1][j]!='9')
{
s[i][j]=s[i-1][j]+1;
pos=j;
break;
}
}
if(pos==-1)
{
flag=1;
break;
}
for(j=0;j<pos;j++)
{
s[i][j]=s[i-1][j];
}
for(j=pos+1;j<len;j++)
{
if(s[i][j]=='?')
s[i][j]='0';
}
}
}
l=len;
}
if(flag) puts("NO");
else
{
puts("YES");
for(i=1; i<=n; i++)
{
printf("%s\n",s[i]);
}
}
}
return 0;
}