poj1753--Flip Game(高斯消元问题2,枚举自由元的首杀)

Flip Game
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

 

Description

Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it's black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules:  
  1. Choose any one of the 16 pieces. 
  2. Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any).

Consider the following position as an example:  

bwbw  
wwww  
bbwb  
bwwb  
Here "b" denotes pieces lying their black side up and "w" denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become:  

bwbw  
bwww  
wwwb  
wwwb  
The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal.  

Input

The input consists of 4 lines with 4 characters "w" or "b" each that denote game field position.

Output

Write to the output file a single integer number - the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it's impossible to achieve the goal, then write the word "Impossible" (without quotes).

Sample Input

bwwb
bbwb
bwwb
bwww

Sample Output

4

 

黑白棋翻转问题,搜索,枚举都可以做,这次用它来练习高斯消元做法

每个有关系的系数为1,每个棋子是否翻转确定了结果是0还是1,得到了异或方程组,使用高斯消元,找出自由元,然后转化为二进制后,枚举自由元,找出最优解。

 

 

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define INF 0x3f3f3f3f
int Map[20][20] , a[20] , min1 , x[20] , freex[20] ;
char str[5][5] ;
void getMap(int k)
{
    int i , j ;
    memset(Map,0,sizeof(Map)) ;
    for(i = 0 ; i < 4 ; i++)
    {
        for(j = 0 ; j < 4 ; j++)
        {
            a[i*4+j] = (str[i][j] - '0') ^ k ;
            Map[i*4+j][i*4+j] = 1 ;
            if( i > 0 )
                Map[i*4+j][i*4+j-4] = 1 ;
            if( i < 3 )
                Map[i*4+j][i*4+j+4] = 1 ;
            if( j > 0 )
                Map[i*4+j][i*4+j-1] = 1 ;
            if( j < 3 )
                Map[i*4+j][i*4+j+1] = 1 ;
        }
    }
    return ;
}
void swap1(int p,int q)
{
    int j , temp ;
    temp = a[p] ;
    a[p] = a[q] ;
    a[q] = temp ;
    for(j = 0 ; j < 16 ; j++)
    {
        temp = Map[p][j] ;
        Map[p][j] = Map[q][j] ;
        Map[q][j] = temp ;
    }
    return ;
}
int solve()
{
    int i , j , k , t = 0 , num1 = 0 ;
    for(i = 0 ; i < 16 && t < 16 ; t++ , i++)
    {
        for(j = i ; j < 16 ; j++)
            if( Map[j][t] )
                break ;
        if( j == 16 )
        {
            freex[num1++] = t ;
            i-- ;
            continue ;
        }
        if( i != j )
            swap1(i,j) ;
        for(j = i+1 ; j < 16 ; j++)
        {
            if( Map[j][t] )
            {
                a[j] = a[j]^a[i] ;
                for(k = t ; k < 16 ; k++)
                    Map[j][k] = Map[j][k] ^ Map[i][k] ;
            }
        }
    }
    for( ; i < 16 ; i++)
        if( a[i] )
            return -1 ;
    if( num1 ) return num1 ;
    for(i = 15 ; i >= 0 ; i--)
    {
        x[i] = a[i] ;
        for(j = i+1 ; j < 16 ; j++)
            x[i] = x[i]^(Map[i][j]*x[j]) ;
    }
    return num1 ;
}
int f(int s)
{
    int i , j , k , key , ans , min1 = INF ;
    getMap(s) ;
    key = solve() ;
    ans = 0 ;
    if( key == 0 )
    {
        ans = 0 ;
        for(i = 0 ; i < 16 ; i++)
            ans += x[i] ;
        min1 = min(min1,ans) ;
    }
    else if( key > 0 )
    {
        int temp = 1<<key ;
        for(int t = 0 ; t < temp ; t++)
        {
            memset(x,0,sizeof(x)) ;
            ans = 0 ;
            for(j = 0 ; j < key ; j++)
                if( t & (1<<j) )
                {
                    x[ freex[j] ] = 1 ;
                    ans++ ;
                }
            for(i = 15 ; i >= 0 ; i--)
            {
                for(k = 0 ; k < 16 ; k++)
                    if( Map[i][k] )
                        break ;
                x[k] = a[i] ;
                for(j = k+1 ; j < 16 ; j++)
                    x[k] ^= (Map[i][j]*x[j]) ;
                ans += x[k] ;
            }
            min1 = min(min1,ans) ;
        }
    }
    return min1 ;
}
int main()
{
    int i , j , min1 = INF , k , ans , temp ;
    for(i = 0 ; i < 4 ; i++)
    {
        scanf("%s", str[i]) ;
        for(j = 0 ; j < 4 ; j++)
        {
            if( str[i][j] == 'b' )
                str[i][j] = '0' ;
            else
                str[i][j] = '1' ;
        }
    }
    ans = f(0) ;
    min1 = min(min1,ans) ;
    ans = f(1) ;
    min1 = min(min1,ans) ;
    if( min1 == INF )
        printf("Impossible\n") ;
    else
        printf("%d\n", min1) ;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值