希尔排序算法

对于直接插入排序,当序列长度较小时,排序的效率较高;当n较大时,若序列已基本有序,排序的效率也较高,其效率可以达到O(n);当n较大且无序时,直接插入排序的效率就较低,这时,如果能将序列分成几个较小的序列,对这些较小的序列先排序, 再对较长的序列进行排序,就可以一定程度地提高排序的效率,这就是希尔排序的基本思想。
希尔排序是一种不稳定的排序算法。希尔排序需要一个存储单元的辅助空间,而且时间性能与增量因子di步长有直接关系,对于不同的步长,时间复杂度不一样,目前还没有人给出选取最好步长的方法。选取步长增量序列的取法很多,有取奇数的,有取质数的,但无论怎么取,都必须满足这样一个规则:最后一个步长一定为1。
	public static void main(String args[]){
		int a[] ={0,9,5,6,10,2,7,8};
		int d[] = {5,3,1};
//		directInsertSort(a);
//		binaryInsertSort(a);
		ShellInsertSort(a,d);	
	}

	/*
  * 希尔排序算法
  * 算法思想:先取一个小于n的整数di(步长),然后把待排序的序列分成di个组,从第一个记录开始,间隔为di的记录为同一组,分组完成之后,在每一组中采用直接插入排序或者二分插入排序进行排序。
  * 减小步长,再进行分组,再排序,序列的有序性进一步得到改善,直到di=1,即为直接插入排序,此时排序完成。
  * 参数:a[]为要排序的数组,d[]为所取得步长(步长从大到小取) 
  */
 public static void ShellInsertSort(int a[],int d[]){
  int di;//步长
  int a_length = a.length;//数组a[]的长度
  for(int i=0;i<d.length;i++){
   di = d[i];//从d[]中取出步长的大小
   for(int j=1;j<= di;j+=1){//按步长大小计算a[]中开排序的位置,开始位置为a[j],结束位置为a[j+di],总共会进行di次分组
    if((j+di) >=a_length){//先判断数组是否会越界
     break;
    }
    int sIndex = j;//开始位置
    int eIndex = j+di;//结束位置
    
    while(eIndex<a_length){//当结束位置小于数组长度时,才进行二分插入排序,排序完成之后,增加下标的值
     printArray("di:" + di +",sIndex:" + sIndex +",eIndex:" + eIndex+",:" , a);
     binaryInsertSort(a, sIndex, eIndex);
     sIndex += di;
     eIndex += di; 
    }
     
   }
  }
 }

	//二分插入排序
	//与直接插入排序算法类似,不同之处在于确定好插入的位置之后,一次性地将数据往后移动。
	//参数:a[]排序的数组,startIndex开始排序的下标,endIndex结束排序的下标
	public static void binaryInsertSort(int []a,int startIndex,int endIndex){

		if(startIndex > endIndex){//判断下标
			System.out.println("开始下标大于结束下标");
			return;
		}
		
		if(endIndex >= a.length){//判断下标是否越界
			System.out.println("结束下标大小大于数组大小");
			return;
		}
				printArray("开始二分插入排序:", a);
		for(int i=startIndex+1;i<endIndex+1;i++){//开始下标第一位作为有序序列,从开始下标第二位开始排序

			//如果有序的最后一位大于要排序的一位,将其加入标记位a[0]
			if(a[i-1]>a[i]){
				a[0] = a[i];
				printArray("将第"+i+"位放入标记位:",a); 
				
				//用二分方式查找要插入的位置(将有序的队列的中间值与要插入的数据比较。如果大,则继续从中间值的右边继续二分查找;如果小,则从中间值的左边开始(相等的情况应该默认为大),以此类推)
				int low = 1;
				int high = i-1;
				
				
				while(high>=low){
					int mid = (low + high)/2;
					//如果插入数据比中间值大
					if(a[0]>=a[mid]){
						low = mid+1;
					}else
						high = mid-1;
				}
				
				printArray("用二分法查找到插入数据的位置为"+(high+1)+":",a);
				
				//跳出循环之后,要插入的位置为high+1(如果不明白的话自己可以尝试一下,假如最后a[0]判断为在a[3]和a[4]之间,这时low=3,mid=3,high=4)
				//假如a[0]<a[3],则进入else,low=3,mid=3,high=2,跳出循环,要插入数据位置为3
				//假如a[3]<a[0]<a[4],则进入if,low=4,mid=3,high=4,进入else,low=4,mid=4,high=3,跳出循环,要插入数据位置为4
				//假如a[4]<a[0],则进入if,low=4,mid=3,high=4,进入if,low=5,mid=4,high=4,跳出循环,要插入的位置为5
				int j;
				for( j = i-1; j>=high+1;j--){//向后移动数据
					a[j+1] = a[j];
				}
				a[j+1] = a[0];
				printArray("插入数据后的结果为:",a);	
			}
		}
		
		System.out.println("-------------");
		
	}


最后看实现的结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值