在 C 语言中,求最大公约数(GCD,Greatest Common Divisor)的常见的四种方法(附带源代码)

本文介绍了C语言中求解最大公约数(GCD)的三种方法:辗转相除法、更相减损法和欧几里德算法的递归版本。欧几里德算法因其性能优势常被首选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 C 语言中,求最大公约数(GCD,Greatest Common Divisor)的常见方法有三种:辗转相除法、更相减损法和辗转相减法。以下是这四种方法的简单实现:

1、辗转相除法:

#include <stdio.h>

int gcd(int a, int b) {
    while (b != 0) {
        int temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}

int main() {
    int num1 = 24;
    int num2 = 36;
    int result = gcd(num1, num2);

    printf("GCD of %d and %d is %d\n", num1, num2, result);

    return 0;
}

2、更相减损法:

#include <stdio.h>

int gcd(int a, int b) {
    while (a != b) {
        if (a > b) {
            a -= b;
        } else {
            b -= a;
        }
    }
    return a;
}

int main() {
    int num1 = 24;
    int num2 = 36;
    int result = gcd(num1, num2);

    printf("GCD of %d and %d is %d\n", num1, num2,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值