2李沐机器学习
文章平均质量分 65
2李沐机器学习
无敌三角猫
机器视觉,图像处理方向
展开
-
【AI Learning Materials】
Christopher Bishop: Pattern Recognition and Machine Learning(PRML,模式识别与深度学习):Tokenization、NER(命名体识别)、电影评论情感分析等(Follow关注仓库的更新☺…tips:可以系统学习,时间不够也可以直接跟着李沐老师的动手学深度学习课程(:RNN、LSTM、BERT等,以及大火的GPT。:CNN有关的baseline、ViT等。李沐《动手学深度学习v2》周志华:《机器学习》西瓜书。李航:《统计学习方法》转载 2023-05-02 15:18:57 · 136 阅读 · 0 评论 -
Linux查看GPU信息和使用情况
显示风扇转速,数值在0到100%之间,是计算机的期望转速,如果计算机不是通过风扇冷却或者风扇坏了,显示出来就是N/A;:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能;:是Display Active的意思,表示GPU的显示是否初始化;显示每块GPU上每个进程所使用的显存情况。如果要周期性的输出显卡的使用情况,可以用。命令行参数-n后边跟的是执行命令的周期,以。大小,另外就是可以通过加入前面的。:显卡内部的温度,单位是摄氏度;:涉及GPU总线的相关信息;,显示更加详细的信息。原创 2023-04-24 11:22:49 · 17614 阅读 · 0 评论 -
深度学习在训练和测试阶段使用显卡的情况是否必须完全一致?
当然,在使用GPU进行推理时,由于GPU的并行计算能力较强,可以显著提高推理速度,特别是在处理大型数据集或者复杂模型时更加明显。因此,如果您有可用的GPU资源,建议在测试过程中使用GPU来进行推理,以获得更快的速度和更好的性能。深度学习模型在进行训练时采用多张显卡进行训练,测试时是不是就与显卡无关了,也就是说可以利用CPU做推理,也可以使用GPU做推理。是的,在深度学习模型训练时采用多张显卡进行训练,测试时模型的预测过程与显卡无关。而在测试阶段,模型的预测过程则不需要如此大量的计算资源,因此可以使用。原创 2023-04-24 10:25:41 · 1276 阅读 · 0 评论 -
卷积神经网络训练三个概念(epoch,迭代次数,batchsize)
总结下训练中最最基础的三个概念:Epoch, Batch, Iteration。转载 2023-04-24 08:49:09 · 4440 阅读 · 0 评论