DGL0.5中的g-SpMM和g-SDDMM

DGL0.5中的g-SpMM和g-SDDMM

导读:DGL0.5版本发布时,其团队也对应发表了一篇论文(https://arxiv.org/abs/1909.01315),较为详细了介绍了DGL的设计、优化以及性能。其中的重要部分就是DGL认为GNN的计算可以归纳为两种,g-SpMM(generalized sparse-dense matrix multiplication)和g-SDDMM(generalized sampled dense-dense matrix mutiplication)。这里对论文中g-SpMM和g-SDDMM部分做个简单笔记。

1.什么是g-SpMM和g-SDDMM

  SpMM的全称是sparse-dense matrix multiplication,SDDMM的全称是sampled dense-dense matrix mutiplication.通过下图可以更直观地理解它们。
  常用的稀疏矩阵格式介绍可以参考:https://www.cnblogs.com/xbinworld/p/4273506.html
在这里插入图片描述

  论文中的表述:
在这里插入图片描述
在这里插入图片描述

2.g-SpMM和g-SDDMM与GNN的关系

  现有的GNN主要都遵循Message Passing paradigm,其定义如下:

在这里插入图片描述

  而Message passing Paradigm和稀疏矩阵操作有着很强的相关性.论文中也通过GCN(计算结点特征时属于SpMM)和GAT(计算边的权重时属于SDDMM)进行了举例说明:

在这里插入图片描述

  而且g-SpMM和g-SDDMM的梯度计算仍然可以用g-SpMM和g-SDDMM来完成,论文中有相关的证明过程,所以backward的时候仍然可以通过SpMM和SDDM来计算。

3.使用g-SpMM和g-SDDMM好处

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.g-SpMM和g-SDDMM的性能测试

  实验数据:
REDDIT graph from (Hamilton
et al., 2017) and a nearest neighbor graph generated by (Qi et al., 2017), with varying feature sizes.

  具体测试:
在这里插入图片描述

  实验结果:
在这里插入图片描述

  结论:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值