一、流行度(Popularity)
内容的流行程度,也称之为热度,最常见的是将榜单中热度的内容推荐给用户(微博热搜,TopN商品)
基于流行度的推荐是围绕流行度计算产生的推荐模型(不仅是TopN) 解决冷启动问题 => 根据流行度来推荐商品的算法,也就是什么内容吸引用户,就给用户推荐什么内容
流行度是对商品热度的一种衡量方式,是否对推荐结果有效,还需要具体分析
二、认知流行度
流行度的衡量:
流行度有多种度量的方式,可粗可细
一段时间内的:总数Count,相对值Ratio,可能性Possibility 某个item被用户反馈的次数,用户热度/用户总数,比如点击率、观看率,完播率
影响流行度的因素: 社会心理因素 一个商品,歌曲是否流行,未必代表它本身质量好坏,与从众心理也有关
社会心理学家阿西曾经做过验证从众心理的实验,结果表明测试者中大约有2/3到3/4的人都具有从众行为 => 从众心理是普遍现象
个性 VS 群体 环境压力,个体容易受到群体的影响,在群体中个性会被淹没,群体思想将会占主导地位 经济利益最大化,群体行为采用该群体利益最大化的方式
节省分析成本,直接follow群体行为
三、从数据集中了解流行度的趋势:
MovieLens数据集 高中低评分的电影,评分随时间变化的趋势相似
评分随时间的变化趋势,都是先升高再降低 => 评分趋势随时间的变化规律很重要
高流行度的item,评分波动越小,反之低流行度的item,评分波动大 => 用户的从众心理
四、冷启动问题
当用户行为信息不足时,采用非个性化推荐
算法本质,什么内容吸引用户,就给用户推荐什么内容
也需要有代表性和区分性,即不能太大众化或老少皆宜 => 无法区分用户的兴趣
多样性,用户兴趣的可能性很多,为了匹配兴趣的多样性 => 提供具有较高覆盖率的启动item集合(这些物品能覆盖主流的用户兴趣)
五、流行度 VS 个性化推荐
长尾理论,市场上冷门产品所占据的共同市场份额不低于热门产品所占据的市场份额。因为热门商品需求很高,但数量少。相反,单个冷门商品需求少,但数据量巨大
流行度较高的item,较少体现用户个性
流行度较低的item,更能代表用户个性(兴趣),计算用户相似度更准确 => 我们在计算相似度推荐的时候,可以推荐相似度高,但不流行的item