基于流行度的推荐

一、流行度(Popularity)

内容的流行程度,也称之为热度,最常见的是将榜单中热度的内容推荐给用户(微博热搜,TopN商品)

基于流行度的推荐是围绕流行度计算产生的推荐模型(不仅是TopN) 解决冷启动问题 => 根据流行度来推荐商品的算法,也就是什么内容吸引用户,就给用户推荐什么内容

流行度是对商品热度的一种衡量方式,是否对推荐结果有效,还需要具体分析

二、认知流行度

流行度的衡量:

流行度有多种度量的方式,可粗可细

一段时间内的:总数Count,相对值Ratio,可能性Possibility 某个item被用户反馈的次数,用户热度/用户总数,比如点击率、观看率,完播率

影响流行度的因素: 社会心理因素 一个商品,歌曲是否流行,未必代表它本身质量好坏,与从众心理也有关

社会心理学家阿西曾经做过验证从众心理的实验,结果表明测试者中大约有2/3到3/4的人都具有从众行为 => 从众心理是普遍现象

个性 VS 群体 环境压力,个体容易受到群体的影响,在群体中个性会被淹没,群体思想将会占主导地位 经济利益最大化,群体行为采用该群体利益最大化的方式

节省分析成本,直接follow群体行为

三、从数据集中了解流行度的趋势:

MovieLens数据集 高中低评分的电影,评分随时间变化的趋势相似

评分随时间的变化趋势,都是先升高再降低 => 评分趋势随时间的变化规律很重要

高流行度的item,评分波动越小,反之低流行度的item,评分波动大 => 用户的从众心理

 

 

四、冷启动问题

当用户行为信息不足时,采用非个性化推荐

算法本质,什么内容吸引用户,就给用户推荐什么内容

也需要有代表性和区分性,即不能太大众化或老少皆宜 => 无法区分用户的兴趣

多样性,用户兴趣的可能性很多,为了匹配兴趣的多样性 => 提供具有较高覆盖率的启动item集合(这些物品能覆盖主流的用户兴趣)

五、流行度 VS 个性化推荐

长尾理论,市场上冷门产品所占据的共同市场份额不低于热门产品所占据的市场份额。因为热门商品需求很高,但数量少。相反,单个冷门商品需求少,但数据量巨大

流行度较高的item,较少体现用户个性

流行度较低的item,更能代表用户个性(兴趣),计算用户相似度更准确 => 我们在计算相似度推荐的时候,可以推荐相似度高,但不流行的item

基于流行推荐算法是一种简单而有效的推荐算法。它的基本思想是通过统计物品的流行推荐热门物品。在国内外的研究中,基于流行推荐算法被广泛应用于各种推荐场景,例如电商、社交网络、新闻推荐等。 国内研究现状: 在国内,基于流行推荐算法的研究主要集中在以下几个方面: 1. 推荐系统中的物品流行预测:通过对历史数据进行分析,预测物品的流行,并基于预测结果进行推荐。 2. 基于社交网络的流行推荐:利用社交网络中的用户行为、社交网络结构等信息,对物品的流行进行预测和推荐。 3. 基于多层次流行推荐算法:将物品的流行按不同的层次进行分类,然后针对不同层次的流行设计不同的推荐算法,以提高推荐的准确率。 4. 基于时间的流行推荐算法:通过对物品的流行随时间的变化进行分析,设计基于时间的流行推荐算法,以更好地满足用户的需求。 国外研究现状: 在国外,基于流行推荐算法的研究主要集中在以下几个方面: 1. 物品的流行预测:通过对历史数据进行分析,预测物品的流行,并基于预测结果进行推荐。 2. 基于社交网络的流行推荐:利用社交网络中的用户行为、社交网络结构等信息,对物品的流行进行预测和推荐。 3. 基于多层次流行推荐算法:将物品的流行按不同的层次进行分类,然后针对不同层次的流行设计不同的推荐算法,以提高推荐的准确率。 4. 基于时间的流行推荐算法:通过对物品的流行随时间的变化进行分析,设计基于时间的流行推荐算法,以更好地满足用户的需求。 总体来说,国内外基于流行推荐算法的研究现状比较相似,但是在具体的应用场景和算法实现方面可能有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值