LeetCode 1. 两数之和

题目描述

题解

暴力法

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        vector<int> result;
        for(int i=0; i < nums.size(); i++) {
            for(int j=i+1; j < nums.size(); j++) {
                if((nums[i]+nums[j])==target) {
                    result.push_back(i);
                    result.push_back(j);
                    return result;
                }
            }
        }
        return result;
    }
};

时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( 1 ) O(1) O(1)

哈希表法

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        vector<int> result;
        map<int, int>tmp;
        for(int i = 0; i < nums.size(); i++) {
            tmp[nums[i]] = i;
        }
        for(int i = 0; i < nums.size(); i++) {
            int complement = target - nums[i];
            if((tmp.count(complement) != 0) && (tmp[complement] != i)) {
            // if((tmp.contains(complement)) && (tmp[complement] != i)) {  // C++ 20
                result.push_back(i);
                result.push_back(tmp[complement]);
                return result;
            }
        }
        
        return result;
    }
    
};

时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)

哈希表法进阶

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        vector<int> result;
        map<int, int>tmp;
        for(int i = 0; i < nums.size(); i++) {
            int complement = target - nums[i];
            if(tmp.count(complement) != 0) {
                result.push_back(i);
                result.push_back(tmp[complement]);
                return result;
            }
            tmp[nums[i]] = i;
        }
        
        return result;
    }
    
};

时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值