A s s i g n m e n t # 3 − s o l u t i o n B y J o n a r i g u e z Assignment\#3 -solution\quad By\ Jonariguez Assignment#3−solutionBy Jonariguez
所有的代码题目对应的代码已上传至github/CS224n/Jonariguez
所有的代码题目对应的代码可查看对应文件夹Assignment3_Code下的.py文件
解:
ii) 只用词本身的话有点像基于统计的方法,面对低频词或者未统计词模型表现不好,有时候词也有二义性,无法确定是否为实体或者是什么实体。
iii) 上下文、词性等。
解:
i) 推算所有变量的形状:
x ( t ) ∈ R 1 × V x^{(t)}\in \mathbb{R}^{1\times V} x(t)∈R1×V
x ( t ) L ∈ R 1 × D x^{(t)}L\in \mathbb{R}^{1\times D} x(t)L∈R1×D
e ( t ) ∈ R 1 × ( 2 w + 1 ) D e^{(t)}\in \mathbb{R}^{1\times (2w+1)D} e(t)∈R1×(2w+1)D
h ( t ) ∈ R 1 × H h^{(t)}\in \mathbb{R}^{1\times H} h(t)∈R1×H
W ∈ R ( 2 w + 1 ) D × H W \in \mathbb{R}^{(2w+1)D\times H} W∈R(2w+1)D×H
y ^ ( t ) ∈ R 1 × C \hat{y}^{(t)}\in \mathbb{R}^{1\times C} y^(t)∈R1×C
U ∈ R H × C U\in \mathbb{R}^{H\times C} U∈RH×C
b 1 ∈ R 1 × H b_1\in \mathbb{R}^{1\times H} b1∈R1×H
b 2 ∈ R 1 × C b_2\in \mathbb{R}^{1\times C} b2∈R1×C
ii) 对于1个word的复杂度为:
e ( t ) = [ x