CS224n课程Assignment3参考答案

这篇博客提供了CS224n课程第三份作业的解决方案,涉及到词本身的问题、统计方法的局限、计算复杂度分析、Python3中的梯度计算、F1分数的挑战、RNN的优化策略如GRU和Bi-RNN。通过阅读,读者可以深入理解词嵌入、RNN以及训练过程中的技巧。
摘要由CSDN通过智能技术生成

A s s i g n m e n t # 3 − s o l u t i o n B y   J o n a r i g u e z Assignment\#3 -solution\quad By\ Jonariguez Assignment#3solutionBy Jonariguez

所有的代码题目对应的代码已上传至github/CS224n/Jonariguez

所有的代码题目对应的代码可查看对应文件夹Assignment3_Code下的.py文件

1

1a

解:
ii) 只用词本身的话有点像基于统计的方法,面对低频词或者未统计词模型表现不好,有时候词也有二义性,无法确定是否为实体或者是什么实体。
iii) 上下文、词性等。

1b

解:
i) 推算所有变量的形状:

x ( t ) ∈ R 1 × V x^{(t)}\in \mathbb{R}^{1\times V} x(t)R1×V
x ( t ) L ∈ R 1 × D x^{(t)}L\in \mathbb{R}^{1\times D} x(t)LR1×D
e ( t ) ∈ R 1 × ( 2 w + 1 ) D e^{(t)}\in \mathbb{R}^{1\times (2w+1)D} e(t)R1×(2w+1)D
h ( t ) ∈ R 1 × H h^{(t)}\in \mathbb{R}^{1\times H} h(t)R1×H
W ∈ R ( 2 w + 1 ) D × H W \in \mathbb{R}^{(2w+1)D\times H} WR(2w+1)D×H
y ^ ( t ) ∈ R 1 × C \hat{y}^{(t)}\in \mathbb{R}^{1\times C} y^(t)R1×C
U ∈ R H × C U\in \mathbb{R}^{H\times C} URH×C
b 1 ∈ R 1 × H b_1\in \mathbb{R}^{1\times H} b1R1×H
b 2 ∈ R 1 × C b_2\in \mathbb{R}^{1\times C} b2R1×C

ii) 对于1个word的复杂度为:

e ( t ) = [ x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值