HDU 2594

http://acm.hdu.edu.cn/showproblem.php?pid=2594

Simpsons’ Hidden Talents

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3323    Accepted Submission(s): 1247


Problem Description
Homer: Marge, I just figured out a way to discover some of the talents we weren’t aware we had.
Marge: Yeah, what is it?
Homer: Take me for example. I want to find out if I have a talent in politics, OK?
Marge: OK.
Homer: So I take some politician’s name, say Clinton, and try to find the length of the longest prefix
in Clinton’s name that is a suffix in my name. That’s how close I am to being a politician like Clinton
Marge: Why on earth choose the longest prefix that is a suffix???
Homer: Well, our talents are deeply hidden within ourselves, Marge.
Marge: So how close are you?
Homer: 0!
Marge: I’m not surprised.
Homer: But you know, you must have some real math talent hidden deep in you.
Marge: How come?
Homer: Riemann and Marjorie gives 3!!!
Marge: Who the heck is Riemann?
Homer: Never mind.
Write a program that, when given strings s1 and s2, finds the longest prefix of s1 that is a suffix of s2.
 

Input
Input consists of two lines. The first line contains s1 and the second line contains s2. You may assume all letters are in lowercase.
 

Output
Output consists of a single line that contains the longest string that is a prefix of s1 and a suffix of s2, followed by the length of that prefix. If the longest such string is the empty string, then the output should be 0.
The lengths of s1 and s2 will be at most 50000.
 

Sample Input
    
    
clinton homer riemann marjorie
 

Sample Output
    
    
0 rie 3
 

Source
 
题目大意:求一个串的前缀和另一个串的后缀相同的最大长度
有两种解题思路:(1)将两个串拼接成一个串,然后求这个串的浅醉和后缀相等的最大长度。(用next数组的性质)
(2)直接KMP把第一个当成子串,第二个当成主串。匹配,返回的j就是子串的长度。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<iomanip>
#include<list>
#include<deque>
#include<map>
#include <stdio.h>
#include <queue>
#include <stack>
#define maxn 10000+5
#define ull unsigned long long
#define ll long long
#define reP(i,n) for(i=1;i<=n;i++)
#define rep(i,n) for(i=0;i<n;i++)
#define cle(a) memset(a,0,sizeof(a))
#define mod 90001
#define PI 3.141592657
#define INF 1<<30
const ull inf = 1LL << 61;
const double eps=1e-5;

using namespace std;

bool cmp(int a,int b){
return a>b;
}
int f[100005];
char p[100005],t[50005];

void getFail(char* p, int* f)
{
int m = strlen(p);
f[0] = 0;
f[1] = 0;
for (int i = 1; i < m; i++)
{
int j = f[i];
while (j && p[i] != p[j])
{
j = f[j];
}
f[i + 1] = p[i] == p[j] ? j + 1 : 0;
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(~scanf("%s%s",p,t))
{
int len1=strlen(p);
int len2=strlen(t);
int len=len1+len2;
strcat(p,t);///字符串拼接
getFail(p,f);
int k=0;
while(f[len]>len1||f[len]>len2)
{
len=f[len];
}
len=f[len];
if(len==0)printf("%d\n",0);
else
{
for(int i=0;i<len;i++)
printf("%c",p[i]);
printf(" %d\n",len);
}
}
return 0;
}


#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<iomanip>
#include<list>
#include<deque>
#include<map>
#include <stdio.h>
#include <queue>

#define maxn 1000010
#define ull unsigned long long
#define ll long long
#define reP(i,n) for(i=1;i<=n;i++)
#define rep(i,n) for(i=0;i<n;i++)
#define cle(a) memset(a,0,sizeof(a))
#define mod 90001
#define PI 3.141592657
#define INF 1<<30
const ull inf = 1LL << 61;
const double eps=1e-5;

using namespace std;

bool cmp(int a,int b){
return a>b;
}
char p[50005],t[50005];
int f[50005];
void getFail(char *p,int *f,int m)
{
f[0]=0;
f[1]=0;
for(int i=1;i<m;i++)
{
int j=f[i];
while(j&&p[i]!=p[j])
{
j=f[j];
}
f[i+1]=p[i]==p[j]?j+1:0;
}
}
int find(char *t,char *p,int *f)
{
int n=strlen(t),m=strlen(p);
getFail(p,f,m);
int j=0;
for(int i=0;i<n;i++)
{
while(j&&p[j]!=t[i])
{
j=f[j];
}
if(p[j]==t[i])j++;
}
return j;
}
int main()
{

while(~scanf("%s%s",p,t))
{
cle(f);
int k=find(t,p,f);
if(k==0)
printf("%d\n",0);
else
{
for(int i=0;i<k;i++)
printf("%c",p[i]);
printf(" %d\n",k);
}
cle(p),cle(t);
}
return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值