POJ 1015 - Jury Compromise

题目的意思是,从n个数对<Pi, Di>中选出m个,要求:

1. |Sum{Pi} - Sum{Di}|最小

2. 满足1的情况下,Sum{Pi + Di}最大

并且输出这m个的编号。

这里n<=200, m<=20, 0<=Pi,Di<=20


解法:三维动态规划。设s[i] = Pi - Di, t[i] = Pi + Di,

f[i][j][k]表示从前i个人中选出j个人,满足它们的s值之和等于k,最大的t值之和,如果无解则等于-1。问题的解就是满足f[n][m][k]有解的绝对值最小的k。

动态转移方程:

对应第i个人选和不选两种情况,f[i][j][k] = max { f[i-1][j][k], f[i-1][j-1][k-s[i]]+t[i] }

其中1<=i<=n, 1<=j<=min(i,20), -20*j<=k<=20*j

初始条件:f[i][0][0]=0, 其他都为-1.

注意考虑f无解的情况,转移时需要做一些条件判断。

由于题目还要求记录下m个人具体的编号,所以还需要一个三维数组path[i][j][k]记录对应f[i][j][k]的最后一个人编号,最后沿着path回退即可构造答案序列。

需要注意的是k有可能是负值,所以实现时要将f的第三维度都加上400,保证下标是正数。

附上AC代码:

#include <iostream>

#define MIN(x, y) ((x) < (y) ? (x) : (y))

using namespace std;

int s[201], t[201], f[201][21][801], path[201][21][801], prosecution[201], defense[201];

int main()
{
	int n, m, nCase;
	for (nCase = 1;; nCase++)
	{
		cin >> n >> m;
		if (n == 0 && m == 0)
			break;

		for (int i = 1; i <= n; i++)
		{
			cin >> prosecution[i] >> defense[i];
			s[i] = prosecution[i] - defense[i];
			t[i] = prosecution[i] + defense[i];
		}

		/* f[i][0][0] = 0, all the others = -1 */
		for (int i = 0; i <= 200; i++)
		{
			for (int j = 0; j <= 20; j++)
			{
				for (int k = 0; k <= 800; k++)
				{
					if (j == 0 && k == 400)
						f[i][j][k] = 0;
					else
					{
						f[i][j][k] = -1; /* no solution */
					}
				}
			}
		}

		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= MIN(i, 20); j++)
			{
				for (int k = -20 * j; k <= 20 * j; k++)
				{
					k += 400;
					/* not select */
					if (f[i - 1][j][k] != -1)
					{
						f[i][j][k] = f[i - 1][j][k];
						path[i][j][k] = path[i - 1][j][k];
					}
					/* select */
					if (f[i - 1][j - 1][k - s[i]] != -1 && f[i - 1][j - 1][k - s[i]] + t[i] > f[i][j][k])
					{
						f[i][j][k] = f[i - 1][j - 1][k - s[i]] + t[i];
						path[i][j][k] = i;
					}
					k -= 400;
				}
			}
		}

		for (int i = 0; i <= 400; i++)
		{
			if (f[n][m][400 - i] != -1 || f[n][m][400 + i] != -1)
			{
				int optK = (f[n][m][400 - i] > f[n][m][400 + i] ? 400 - i : 400 + i);
				int ans[21], sum_prosecution = 0, sum_defense = 0;

				/* rebuild the path */
				int ii = n, jj = m, kk = optK;
				for (int j = 1; j <= m; j++)
				{
					ans[j] = path[ii][jj][kk];
					ii = ans[j] - 1;
					jj--;
					kk -= s[ans[j]];
					sum_prosecution += prosecution[ans[j]];
					sum_defense += defense[ans[j]];
				}

				/* write result */
				cout << "Jury #" << nCase << endl;
				cout << "Best jury has value " << sum_prosecution << " for prosecution and value " << sum_defense << " for defence:" << endl;

				/* write path */
				for (int j = m; j >= 1; j--)
					cout << ' ' << ans[j];
				cout << endl << endl;
				break;
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值