E - Mex

http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=216#problem/E


又是一道线段树神题。

对一个非负序列,定义mex(i,j)为区间[i,j]内没出现最小的正整数。求所有满足(1 <= i <= j <= n)的mex(i,j)的和。


以序列1 2 0 4 6 3 5 7 1 2 4 5 8为例,先把以i = 1的mex(1,j), i = 2的mex(2,j)列出来为

i = 1     0 0 3 3 3 5 7 8 8 8 8 8 9

i = 2        0 1 1 1 1 1 1 8 8 8 8 9

可以发现mex(2,j)与mex(1,j)有关系,就是在第一个1(a[1])与第二个1(a[9])之间的mex(1,j)>1(a[1])的数在mex(2,j)中都变为了1,而其余的mex(2,j)不变。所以只要找到了要变为1(a[1])的区间l和r,然后更新这一区间的值求和即可。

又可以发现对所有固定的i,mex(i,j)都是递增的,可以根据这一性质找到区间的左端点l,即第一个mex值大于a[1]的位置,而r可以设置一个next数组记录每个位置的数它的下一次出现的位置,那么r = next[i]-1。

所以,先初始化出mex(1,j)然后就依次求出以后的mex(i,j),用线段树维护区间的和和最大值。


#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
//#define LL long long
#define LL __int64
#define eps 1e-12
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 200010;

struct node
{
    int l,r;
    int lazy; //lazy标记这一段区间的值是否相同		
    LL sum; //区间的和
    LL mx;//区间的最大值
}tree[maxn*4];

int a[maxn];
int next[maxn];
int mex[maxn];
map<int,int>M;

void push_up(int v)
{
    if(tree[v].l == tree[v].r) return;
    tree[v].mx = max(tree[v*2].mx,tree[v*2+1].mx);
    tree[v].sum = tree[v*2].sum + tree[v*2+1].sum;
}

void push_down(int v)
{
    if(tree[v].l == tree[v].r || tree[v].lazy == 0)
        return;
    tree[v*2].lazy = tree[v*2+1].lazy = 1;
    tree[v*2].mx = tree[v*2+1].mx = tree[v].mx;
    tree[v*2].sum = tree[v].mx * (tree[v*2].r - tree[v*2].l + 1);
    tree[v*2+1].sum = tree[v].mx * (tree[v*2+1].r - tree[v*2+1].l + 1);
    tree[v].lazy = 0;
}

void build(int v, int l, int r)
{
    tree[v].l = l;
    tree[v].r = r;
    tree[v].lazy = 0;
    if(l == r)
    {
        tree[v].sum = mex[tree[v].l];
        tree[v].mx = mex[tree[v].l];
        return;
    }
    int mid = (l+r)>>1;
    build(v*2,l,mid);
    build(v*2+1,mid+1,r);
    push_up(v);
}

//找出mex值第一个大于a[i]的位置
int get(int v, int key)
{
    if(tree[v].l == tree[v].r)
        return tree[v].l;
    push_down(v);
    if(key < tree[v*2].mx)
        return get(v*2,key);
    else return get(v*2+1,key);
}

void update(int v, int l, int r, int key)
{
    if(tree[v].l == l && tree[v].r == r)
    {
        tree[v].mx = key;
        tree[v].lazy = 1;
        tree[v].sum = key * (tree[v].r - tree[v].l + 1);
        return;
    }
    push_down(v);
    int mid = (tree[v].l + tree[v].r) >> 1;
    if(r <= mid)
        update(v*2,l,r,key);
    else if(l > mid)
        update(v*2+1,l,r,key);
    else
    {
        update(v*2,l,mid,key);
        update(v*2+1,mid+1,r,key);
    }
    push_up(v);
}

int main()
{
    int n,Min;
    while(~scanf("%d",&n)&&n)
    {
        for(int i = 1; i <= n; i++)
            scanf("%d",&a[i]);
        M.clear();
        Min = 0;
        for(int i = 1; i <= n; i++)
        {
            M[a[i]] = 1;
            while(M.find(Min) != M.end())
                Min++;
            mex[i] = Min;
        }

        M.clear();
        for(int i = n; i >= 1; i--)
        {
            if(M.find(a[i]) == M.end())
                next[i] = n+1; //next[i]而不是next[a[i]]
            else next[i] = M[a[i]];
            M[a[i]] = i;
        }

        build(1,1,n);
        LL sum = 0;
        for(int i = 1; i <= n; i++)
        {
            sum += tree[1].sum;
            if(tree[1].mx > a[i])
            {
                int l = get(1,a[i]);
                int r = next[i];
                if(l < r)
                    update(1,l,r-1,a[i]);
            }
            update(1,i,i,0);
        }
        printf("%I64d\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值