神经网络&Deep Learning
文章平均质量分 78
LandH的Blog
这个作者很懒,什么都没留下…
展开
-
[Deep Learning] What`s batch normalization
本文转载自:http://blog.csdn.net/shuzfan/article/details/50723877本次所讲的内容为Batch Normalization,简称BN,来源于《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,是一篇很转载 2018-01-12 11:02:33 · 181 阅读 · 0 评论 -
[tensorflow] tensorflow 1.0 学习:模型的保存与恢复(Saver)
转自:http://www.cnblogs.com/denny402/p/6940134.htmltensorflow 1.0 学习:模型的保存与恢复(Saver)将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。模型保存,先要创建一个Saver对象:如saver=tf.train.Saver()在创建这个Sa...转载 2018-01-25 18:00:30 · 308 阅读 · 0 评论 -
[Keras] 使用Keras编写自定义网络层(layer)
Keras提供众多常见的已编写好的层对象,例如常见的卷积层、池化层等,我们可以直接通过以下代码调用:# 调用一个Conv2D层from keras import layersconv2D = keras.layers.convolutional.Conv2D(filters,\kernel_size, \strides=(1, 1), \padding='valid', \.....原创 2018-02-09 10:27:34 · 37039 阅读 · 10 评论 -
[Deeplearning] Gradient vanish
转载自哈工大SCIR(公众号) 为了弄清楚为何会出现消失的梯度,来看看一个极简单的深度神经网络:每一层都只有一个单一的神经元。下图就是有三层隐藏层的神经网络:转载 2018-01-10 14:33:01 · 359 阅读 · 0 评论 -
[Deep Learning] RELU 激活函数及其他相关的函数
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。更多相关博客请猛戳:http://blog.csdn.net/cyh_24如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/50593400日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid、ReLU等等。不过好像忘了问自转载 2018-01-18 17:44:05 · 788 阅读 · 0 评论 -
[DeepLearning] DenseNets学习day1:(综述PPT)DenseNets简介_An Introduction of DenseNets
转载请注明:出处:http://mp.blog.csdn.net/postedit/79075314作者:Chi Liu请勿商用ppt下载链接:http://download.csdn.net/download/u013084616/10208262references下载链接:http://download.csdn.net/download/u013084616/10208原创 2018-01-16 15:35:39 · 515 阅读 · 0 评论 -
[Deep Learning] DenseNet 的“what”、“why”和“how”
转自http://www.sohu.com/a/161639222_114877CVPR 2017最佳论文作者解读:DenseNet 的“what”、“why”和“how”|CVPR 2017DenseNet 的基本结构DenseNet 是一种具有密集连接的卷积神经网络。在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并转载 2018-01-12 15:57:42 · 437 阅读 · 0 评论 -
[Deep Learning] ResNets、HighwayNets、DenseNets:用 TensorFlow 实现超深度神经网络
ResNets、HighwayNets、DenseNets:用 TensorFlow 实现超深度神经网络在许多任务中,神经网络越深,性能就越好。最近几年神经网络的趋势是越来越深。几年前最先进的神经网络还仅有12层深,现在几百层深的神经网络已经不是稀奇事了。本文中作者介绍了三个非常深的神经网络,分别是ResNet、HighwayNet和DenseNet,以及它们在Tensorflow上的实现转载 2018-01-12 15:34:58 · 1188 阅读 · 0 评论 -
[Deep Learning] 用TensorFlow实现ResNeXt和DenseNet
原文来源:GitHubResNeXt-Tensorflow使用Cifar10数据集的ResNeXt在Tensorflow上的实现。如果你想查看原作者的代码,请参考此链接https://github.com/facebookresearch/ResNeXt要求Tensorflow 1.xPython 3.xtflearn(如果你觉得全局转载 2018-01-12 15:29:56 · 7675 阅读 · 0 评论 -
[Deeplearning] Highway Network & 几篇文章证明了优化深层神经网络十分困难
随着神经网络的发展,网络的深度逐渐加深(更深的层数以及更小的感受野,能够提高网络分类的准确性(Szegedy et al.,2014;Simonyan & Zisserman,2014)),网络的训练也就变得越来越困难。Highway Networks就是一种解决深层次网络训练困难的网络框架。 以下这几篇文章证明了优化深层神经网络十分困难(写文章的时候肯定用得到,先记下)转载 2018-01-10 14:29:13 · 906 阅读 · 0 评论 -
[tensorflow] tf.nn.sparse_softmax_cross_entropy_with_logits的使用方法及常见报错
函数说明在计算交叉熵之前,通常要用到softmax层来计算结果的概率分布。因为softmax层并不会改变最终的分类结果(排序),所以,tensorflow将softmax层与交叉熵函数进行封装,形成一个函数方便计算:tf.nn.softmax_cross_entropy_with_logits(logits= , labels=)。为了加速计算过程,针对只有一个正确答案(例如MNIST识别)的分类...原创 2018-01-23 13:19:36 · 6241 阅读 · 2 评论