Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
#include<stdio.h>
#include<string.h>
#define maxnum 200000
#define maxint 1000000
struct node
{
int s,v,w,f;
} edge[1000000];
int dian,bian,st,fn;
int count;
void BFS()
{
int dis[maxnum];
int vis[maxnum];
int i,j;
int a,b;
for (i = 0;i <= dian;i++)
dis[i] = maxint;
for (i = 0;i <= dian;i++)
vis[i] = maxint;
dis[st]=0;
vis[st]=0;
for(i=1; i<=dian; i++)
{
for(j=0; j<count; j++)
{
a=edge[j].s;
b=edge[j].v;
if(dis[b]>dis[a]+edge[j].w)
{
dis[b]=dis[a]+edge[j].w;
vis[b]=vis[a]+edge[j].f;
}
else if(dis[b]==dis[a]+edge[j].w)
{
vis[b]=vis[b]<vis[a]+edge[j].f? vis[b]:vis[a]+edge[j].f;
}
}
}
printf("%d %d\n",dis[fn],vis[fn]);
}
int main()
{
int i,s,v,w,f;
while(scanf("%d %d",&dian,&bian),dian||bian)
{
count=0;
for(i=0; i<bian; i++)
{
scanf("%d %d %d %d",&s,&v,&w,&f);
edge[count].s=s;
edge[count].v=v;
edge[count].w=w;
edge[count].f=f;
count++;
edge[count].s=v;
edge[count].v=s;
edge[count].w=w;
edge[count].f=f;
count++;
}
scanf("%d %d",&st,&fn);
BFS();
}
return 0;
}
贝尔曼福特