排序:
默认
按更新时间
按访问量

吴恩达《深度学习》第五课第二周

序列模型——自然语言处理与词嵌入 2.1 词汇表征 1.通常在序列模型中我们设置词汇表 表征一个词汇的集合,对某个具体的单词,使用one-hot形式表示,比如: 这样表征虽然思路简单,但是存在一个缺陷:由于任意两个词汇one-hot进行内积所得的结果均为0,因此无法描述词汇之间的某...

2018-08-11 11:00:55

阅读数:3

评论数:0

win7+IDLE+x64环境安装opencv所遇到的“坑”

在处理图像时,需要使用opencv库,在windows环境下安装常常会遇到各种问题,本人在安装过程中足足折腾了两个周末才最终搞定,为了大家能够避免再次入“坑”,特整理出此文。 1.opencv的pip安装 pip install opencv-python 此步骤的“坑”如下: pip是...

2018-08-05 17:21:33

阅读数:13

评论数:0

【转载】TensorFlow常用函数总结

原文来自:http://blog.csdn.net/lenbow/article/details/52152766   1、tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’...

2018-08-05 13:59:17

阅读数:88

评论数:0

Tensorflow中的降维函数总结:tf.reduce_*

在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总 1.tf.reduce_sum tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , re...

2018-08-05 13:49:22

阅读数:193

评论数:0

吴恩达《深度学习》第五课第一周

序列模型——循环序列模型 1.1为什么选择序列模型? 1.使用序列模型的实例: 语音识别、音乐合成、情感分类、DNA序列分析、机器翻译、视频行为检测、命名实体识别 1.2数学符号 1.命名实体识别示例: X:输入(待识别的文本) Y:输出(某单词是否为人名,是=1,不是=0) ...

2018-08-04 15:12:59

阅读数:10

评论数:0

吴恩达《深度学习》第四课第四周

卷积神经网络——人脸识别与神经风格转换 4.1什么是人脸识别?  1.人脸验证与人脸识别 验证:输入为图像、名字、ID等,输出为输入的图像与其声明的是否是同一人; 识别:输入为图像,输出为该图像是否为数据库中的图像之一,如果是给出ID。 2.人脸识别较人脸验证更困难,在之后课程中先建立一...

2018-07-29 14:27:30

阅读数:38

评论数:2

自动驾驶-汽车检测

本文是基于吴恩达《深度学习》卷积神经网络第三周习题而做,通过建立YOLO模型进行目标检测。 所需的第三方库如下,可点击此处下载。 import argparse import os import matplotlib.pyplot as plt from matplotlib.pyplot ...

2018-07-27 17:11:17

阅读数:19

评论数:0

吴恩达《深度学习》第四课第三周

卷积神经网络——目标检测 3.1目标定位 1.分类与定位 分类问题可以有助于定位问题的解决,当识别完图片类型之后我们可以让神经网络的输出增加几个单元,从而输出一个边界框(bounding box),具体而言就是多输出4个数字(b_x, b_y, b_h, b_w),在这种情况下,输出将包含:...

2018-07-26 10:36:43

阅读数:15

评论数:0

基于Keras的ResNet实现

本文是吴恩达《深度学习》第四课《卷积神经网络》第二周课后题第二部分的实现。 0.ResNet简介 目前神经网络变得越来越复杂,从几层到几十层甚至一百多层的网络都有。深层网络的主要的优势是可以表达非常复杂的函数,它可以从不同抽象程度的层里学到特征,比如在比较低层次里学习到边缘特征而在较高层里可以...

2018-07-24 14:47:42

阅读数:48

评论数:0

人脸表情识别--基于Keras的深层卷积神经网络

本文是吴恩达《深度学习》第四课《卷积神经网络》第二周课后题第一部分的实现。 1.Keras简介 Keras创建的目的是深度学习工程师能够快速的搭建和试验不同的模型,如同TensorFlow现对于Python是高层的框架一样,Keras是更高层的框架并提供了额外的抽象,因为我们需要尽可能快速的将...

2018-07-23 13:56:20

阅读数:24

评论数:0

TroubleShooting:OSError: pydot failed to call GraphViz.Please install GraphViz......

最近在使用Keras搭建CNN时使用到一个函数plot_model(),这个函数需要使用SVG将网络结构以.png的格式保存,但是在运行时出现错误提示:OSError: pydot failed to call GraphViz.Please install GraphViz (https://w...

2018-07-23 13:51:25

阅读数:59

评论数:0

吴恩达《深度学习》第四课第二周

2深度卷积网络——实例探究 学习目标:通过本课程的学习之后,可以阅读计算机视觉方面的论文,学习别人以取得的比较好的CNN架构。 2.1为什么要进行实例探究 1.学习一门技术最好的办法是学习别人如何应用。 经典的网络: LeNet-5 AlexNet VGG 新型网络: ResNet...

2018-07-21 15:53:11

阅读数:25

评论数:0

手把手教你搭建卷积神经网络(CNN)

本文是基于吴恩达老师的《深度学习》第四课第一周习题所做,如果本文在某些知识点上描述得不够透彻的可以参见相关章节的具体讲解,同时极力推荐各位有志从事计算机视觉的朋友观看一下吴恩达老师的《深度学习》课程。 1.卷积神经网络构成 总的来说,卷积神经网络与神经网络的区别是增加了若干个卷积层,而卷积层又...

2018-07-20 12:09:58

阅读数:64

评论数:0

吴恩达《深度学习》第四课第一周笔记

卷积神经网络——卷积神经网络 一、计算机视觉 1.计算机视觉的具体应用:图像识别、目标检测、图片风格转换。在应用计算机视觉时要面临一个挑战:数据输入大。例如:一张画质为1000*1000*3的图片,其所构建的神经网络中输入特征将是300W,这将消耗巨大的内存,因此要处理这样庞大的神经网络,必须...

2018-07-15 19:48:05

阅读数:63

评论数:0

吴恩达《深度学习》第三课第二周笔记

结构化机器学习项目——机器学习策略(2)一、误差分析1.性能上限:优化模型中的某个性能所减少的最大的误差。2.并行评估。对比多种导致误差的原因,通过分析错误标记的例子,统计假阳性(False positives)和假阴性(False nagatives)其在错误识别集中所占的比例,决定最终可选择的...

2018-07-14 19:45:55

阅读数:33

评论数:0

吴恩达《深度学习》第三课第一周笔记

结构化机器学习项目——机器学习策略(一)一、为什么是机器学习(ML)策略我们在优化一个模型时可以从很多角度来着手,如下图,但是如果不分析清楚就一味地从某个方面莽撞前行会浪费大量的时间。二、正交化1.在深度学习中,需要调整的超参数非常多,而对于资深的深度学习专家而言,对于需要调整什么以达到什么效果是...

2018-07-13 11:35:29

阅读数:19

评论数:0

使用tensorflow搭建深层神经网络

在吴恩达老师的《深度学习》第二课第三周的课程中,提及到了多种深度学习框架,包括caffe/caffe2,CNTK,DL4J,Keras,Lasagne,mxnet,paddlepadle,tensorflow,Theano,Torch等等,虽然Andrew说不特别推荐某种框架,但因其在谷歌多年的经...

2018-07-11 22:21:53

阅读数:26

评论数:0

吴恩达《深度学习》第二课第三周笔记

改善神经网络之超参调试、batch正则化和程序框架一、调试处理超参数:alpha(学习速率),alpha_decay(学习率衰减率),beta(momentum),beta1,beta2,epsilon(Adam),layers(网络层数),hidden_units(隐藏层神经元数),mini_b...

2018-07-09 17:17:58

阅读数:39

评论数:0

深层神经网络的优化算法

神经网络发展至今,每天都有新的优化算法被提出,但是鲜有通用性好的优化算法,在课程中吴恩达老师介绍了优化效果和通用性都非常好的几种优化算法:mini-batch梯度下降、momentum梯度下降、RMSprop、Adam算法等等,下面逐一进行学习。程序所需的库文件如下import numpy as ...

2018-07-08 15:48:49

阅读数:52

评论数:0

吴恩达《深度学习》第二课第二周笔记

改善深层神经网络之优化算法一、mini-batch梯度下降法(优化方法之一)机器学习的应用是一个高度依赖经验的过程,需要大量的迭代,需要训练大量的模型,所以需要优化算法才能快速训练模型。使用mini-batch的意义:当训练样本集非常巨大时,比如500W个,使用向量化处理数据时每次处理如此巨大的数...

2018-07-07 17:21:22

阅读数:327

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭