各类距离汇总(偶尔更新中。。。)

本文介绍了多种距离度量方法,包括曼哈顿距离、欧式距离、切比雪夫距离、明式距离、汉明距离、余弦距离、大圆距离、李距离和杰卡德距离。它们在不同的场景下有不同的应用,如信息论、几何、机器学习等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.曼哈顿距离

曼哈顿距离又称马氏距离(Manhattan distance),用以标明两个点上在标准坐标系上的绝对轴距之总和。

例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:

\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|.

2.欧式距离

欧式距离又称欧几里得距离或欧几里得度量(Euclidean Metric),以空间为基准的两点之间最短距离,与之后的切比雪夫距离的差别是,只算在空间下。

说的通俗点,就是初中知识,两点之间直线最短的概念。

3.切比雪夫距离

切比雪夫距离又称(Chebyshev distance)或者(Supremum distance)。数学上,切比雪夫距离(Chebyshev distance)或是L∞度量是向量空间中的一种度量,二个点之间的距离定义为其各座标数值差的最大值。

例如,两个人同时从A到B,二者经历的欧式距离来相等,但由于存在其他维度上的差异(比如交通方式),切比雪夫距离可能不同。

4.明式距离

明氏距离又叫做明可夫斯基距离(Minkowski distance)。

当纬度等于1时候,其公式等价于曼哈顿距离。

等于2时候,其公式等价于欧式距离。

当大于2到无穷大时候,其公式等价于切比雪夫距离。

5.汉明距离

汉明距离是以理查德·卫斯里·汉明的名字命名的。在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。例如:

ab 与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值