第八章(2) 聚类:凝聚层次聚类

  1. 有两种产生层次聚类的方法:
    1. 凝聚的:从点作为个体簇开始,每一步合并两个最接近的簇,这需要定义簇的邻近性概念
    2. 分裂的:从包含所有点的某个簇开始,每一步分裂一个簇,直到剩下单点簇,需要确定每一步分裂哪个簇,如何分裂
  2. 基本凝聚:
    1. 定义簇之间的邻近性:簇的邻近性通常用特定的簇类型定义;凝聚层次聚类源于基于图的聚类,有下面3种:
      1. MIN(单链):簇的邻近度为不同簇的两个最近的点之间的邻近度
      2. MAX(全链):簇的邻近度为不同簇的两个最远的点之间的邻近度
      3. 组平均:簇的邻近度为不同簇的所有点对的邻近度的平均值
    2. 而取基于原型的聚类,簇用质心代替,则不同簇的邻近度的定义为簇质心之间的邻近度;而Ward方法通过合并两个簇导致的SSE增加来度量两个簇之间的邻近度(当然Ward方法的合并后的质心也是保证了目前簇的SSE最小)
    3. 特殊技术:
      1. 单链:使用图的术语,将所有点当做单点簇开始,每次在点之间加上一条链,最短的链先加,这些链将点合并成簇;擅长处理非椭圆形簇,但对噪声和离群点很敏感
      2. 全链:也是最短的链先加,点被完全连接则为簇;对噪声和离群点不敏感,可能使大的簇破裂,偏好球形
      3. 组平均:簇间的所有点对的组合的邻近度的平均
      4. Ward方法:簇的邻近度的定义为两个簇合并时导致的平方误差的增量(最小)
      5. 质心方法:计算簇的质心之间的距离来计算簇的邻近度(合并的两个簇可能比前一步合并的簇对更相似,而其他方法被合并簇之间的距离随层次聚类进展单调增加)
    4. 簇邻近度的Lance-Williams公式:以上的任意簇邻近度可以看作该公式中两个簇之间邻近度的不同参数的一种选择
    5. 层次聚类的问题:
      1. 缺乏全局目标函数:在每一步局部的确定哪些簇应当合并
      2. 处理不同大小簇的能力:如何处理待合并的簇对的相对大小:
        1. 加权:平等的对待所有簇,则赋予不同大小簇中的点不同的权值
        2. 非加权:考虑每个簇的点数,所有簇中的点有相同的权值;通常,非加权更可取
      3. 合并决策是最终的:合并的决策做出后不能撤销;改进方法是:
        1. 移动树的分支以改善全局目标函数
        2. 划分聚类技术来创建小簇,然后对这些小簇层次聚类
    6. 层次聚类的优缺点:实际上使用这种算法是因为基本应用需要层次结构,且聚类质量较高;缺点是开销大,合并不能撤销则对噪声和高维数据造成影响;可以先用划分聚类(k均值)来先部分聚类,这样问题可以解决

<think>好的,我需要回答用户关于层次聚类算法的实现方法的问题。首先,我得回顾一下层次聚类的基本概念和类型,确保自己理解正确。层次聚类主要分为凝聚和分裂两种,用户可能想知道具体如何实现,尤其是凝聚层次聚类,因为分裂的用得少一些。 接下来,根据用户提供的引用资料,特别是引用[1]到[3],里面提到了层次聚类的原理、步骤以及Python实现。我需要整合这些信息,确保回答结构清晰,分步骤说明实现方法。同时要注意用户的系统级指令,比如使用正确的中文回答,行内数学公式用$...$,独立公式用$$...$$,并且生成相关问题。 首先,层次聚类的实现步骤通常包括计算距离矩阵、合并最近簇、更新矩阵和重复直到完成。这部分需要详细描述每个步骤,比如如何计算距离,不同的连接方式(单连接、全连接、平均连接等)。然后,给出Python实现的示例代码,参考用户提供的引用中的Python代码结构,可能需要使用scipy库中的层次聚类方法,或者自己实现一个简单的版本。 在编写代码时,要注意代码格式是否正确,是否与示例中的Python代码类似,使用正确的语法。同时,数学公式如距离计算公式需要用LaTeX正确表示,比如欧氏距离公式写成$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$,确保符合用户的格式要求。 另外,用户要求生成相关问题,我需要根据层次聚类的常见疑问点来设计,比如优缺点、参数影响、处理大规模数据的方法、与K-means的比较等。这些问题应该能帮助用户进一步理解层次聚类的应用和限制。 最后,检查所有引用是否在回答末尾正确标注,引用标识是否自然添加。例如,在提到凝聚层次聚类时,引用[1]和[2],在提到Python实现时引用[3]。同时确保回答中没有使用Markdown格式,保持自然的中文叙述,结构清晰,分点说明实现步骤和关键点。 现在,我需要将这些思考整理成一个连贯的回答,确保每个部分都符合用户的要求,并且信息准确可靠,引用正确。同时,生成的示例代码要简洁明了,能够帮助用户理解实现过程。最后的问题部分要覆盖用户可能感兴趣的方面,引导他们深入学习和应用层次聚类算法。</think>### 层次聚类算法实现方法 层次聚类是一种通过计算样本间相似度构建树状结构的聚类方法,主要分为**凝聚层次聚类**(自下而上)和**分裂层次聚类**(自上而下)。以下以**凝聚层次聚类**为例,分步骤说明其实现方法: --- #### **1. 核心步骤** 1. **初始化距离矩阵** 计算所有样本两两之间的距离(如欧氏距离$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$),形成初始距离矩阵。 2. **合并最近簇** 找到距离最小的两个簇(初始时每个样本为一个簇),合并为一个新簇。 3. **更新距离矩阵** 根据选择的**连接方式**重新计算新簇与其他簇的距离: - **单连接**(最小距离):$d_{\text{新簇}, C} = \min(d(A,C), d(B,C))$[^2] - **全连接**(最大距离):$d_{\text{新簇}, C} = \max(d(A,C), d(B,C))$ - **平均连接**(平均距离):$d_{\text{新簇}, C} = \frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} d(a,b)$ 4. **重复步骤2-3** 直到所有样本合并为一个簇或达到预设聚类数量。 --- #### **2. Python实现示例** 使用`scipy`库快速实现层次聚类: ```python from scipy.cluster.hierarchy import linkage, dendrogram import matplotlib.pyplot as plt import numpy as np # 生成示例数据 data = np.array([[1,2], [3,4], [5,6], [7,8]]) # 计算连接矩阵(使用平均连接方式) Z = linkage(data, method='average') # 绘制树状图 plt.figure(figsize=(10, 5)) dendrogram(Z) plt.title('层次聚类树状图') plt.show() ``` [^3] --- #### **3. 关键注意点** - **距离度量选择**:欧氏距离、曼哈顿距离或余弦相似度等。 - **连接方式影响**:单连接易形成长条簇,全连接倾向紧凑簇。 - **复杂度分析**:时间复杂度为$O(n^3)$,适合小规模数据[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值