R教材6 回归

本文详细介绍了如何在R中使用OLS进行回归分析,包括lm()函数的使用、模型构建、交互项表示及模型结果分析。重点讨论了多元线性回归中的变量相关性检查、交互项效应、回归诊断以及如何处理模型的前提假设问题,如残差分析、正态性检验、同方差性检验等。此外,还提到了异常值、高杠杆值点和强影响点的识别,以及如何通过变量变换、增删变量、使用其他回归方法来改进模型。
摘要由CSDN通过智能技术生成
  1. 大部分情况下,我们用OLS(最小二乘法)来得出回归模型
  2. lm(formula,data)拟合回归模型,data是数据框
    1. y~x,左边为响应变量,右边为解释变量;+分隔预测变量
    2. :表示交互项,x:y
    3. *表示所有可能交互项的简洁方式,x*z=x+z+x:z
    4. ^表示交互达到某个次数,(x+z+w)^2=x+z+w+x:z+x:w+z:w
    5. .表示出因变量外的所有变量,不包含自变量间的交互项
    6. -从等式中移除某个变量
    7. -1删除截距项
    8. I()从算术的角度来解释括号中的元素,如I(x^2);在R中写回归模型,单个x^2是不能写的,必须这样写
    9. fun可以在表达式中用的数学函数,可用在因变量,log(y)~x+z
  3. 回归结果分析函数
    1. summary()
    2. coefficients()列出模型的系数
    3. confint()提供模型参数的置信区间
    4. fitted()拟合模型的预测,模型拟合的y值,fitted(模型)
    5. residuals()拟合模型的残差
    6. anova()比较多个拟合模型的方差分析,可以比较模型间是否有差异,根据奥卡姆剃刀原则,可以比较是否是最优最简模型
    7. vcov()模型参数的协方差矩阵
    8. AIC()赤池信息统计量
    9. plot()作4张图
    10. *abline()在前一个图上划直线;lines(x,y)根据点作平滑的曲线
    11. *car::scatterplot()更方便地绘制二元关系图
    12. predict()用拟合模型对新数据预测y
    13. *options(digits=2),设置小数点后2位
  4. 多元线性回归
    1. 首先,检查变量间的相关性cor()
      1. car::scatterplotMatrix(),变量间的散点图矩阵
    2. lm(y~.,data),在多元回归中要考虑交互项,具有相关性就有可能有交互项
      1. effects::effect("term",mod,,xlevels=list(对象=c(确定的多值)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值