- 大部分情况下,我们用OLS(最小二乘法)来得出回归模型
- lm(formula,data)拟合回归模型,data是数据框
- y~x,左边为响应变量,右边为解释变量;+分隔预测变量
- :表示交互项,x:y
- *表示所有可能交互项的简洁方式,x*z=x+z+x:z
- ^表示交互达到某个次数,(x+z+w)^2=x+z+w+x:z+x:w+z:w
- .表示出因变量外的所有变量,不包含自变量间的交互项
- -从等式中移除某个变量
- -1删除截距项
- I()从算术的角度来解释括号中的元素,如I(x^2);在R中写回归模型,单个x^2是不能写的,必须这样写
- fun可以在表达式中用的数学函数,可用在因变量,log(y)~x+z
- 回归结果分析函数
- summary()
- coefficients()列出模型的系数
- confint()提供模型参数的置信区间
- fitted()拟合模型的预测,模型拟合的y值,fitted(模型)
- residuals()拟合模型的残差
- anova()比较多个拟合模型的方差分析,可以比较模型间是否有差异,根据奥卡姆剃刀原则,可以比较是否是最优最简模型
- vcov()模型参数的协方差矩阵
- AIC()赤池信息统计量
- plot()作4张图
- *abline()在前一个图上划直线;lines(x,y)根据点作平滑的曲线
- *car::scatterplot()更方便地绘制二元关系图
- predict()用拟合模型对新数据预测y
- *options(digits=2),设置小数点后2位
- 多元线性回归
- 首先,检查变量间的相关性cor()
- car::scatterplotMatrix(),变量间的散点图矩阵
- lm(y~.,data),在多元回归中要考虑交互项,具有相关性就有可能有交互项
- effects::effect("term",mod,,xlevels=list(对象=c(确定的多值)))
- 首先,检查变量间的相关性cor()
R教材6 回归
最新推荐文章于 2022-12-13 18:40:36 发布
本文详细介绍了如何在R中使用OLS进行回归分析,包括lm()函数的使用、模型构建、交互项表示及模型结果分析。重点讨论了多元线性回归中的变量相关性检查、交互项效应、回归诊断以及如何处理模型的前提假设问题,如残差分析、正态性检验、同方差性检验等。此外,还提到了异常值、高杠杆值点和强影响点的识别,以及如何通过变量变换、增删变量、使用其他回归方法来改进模型。
摘要由CSDN通过智能技术生成