Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN是一种目标检测网络,通过区域提议网络(RPN)几乎无开销地生成region proposal。RPN是一个全卷积网络,可以同时预测边界框和得分,与Fast R-CNN共享特征,提高效率。通过端到端训练,RPN在保持检测精度的同时实现了快速检测,适用于非常深的VGG-16模型。在PASCAL VOC和COCO数据集上表现出高精度,且运行速度快。
摘要由CSDN通过智能技术生成


Detection with Region Proposal Networks论文笔记)

摘要

最新的目标检测网络是根据region proposal 算法来假定对象位置的。SPPnet 和Fast R-CNN 进一步减少了这些检测网络的运行时间,然而暴露出region proposal的计算是一个瓶颈, 在这项工作中,我们引入了一个区域提议网络(RPN),该区域提议网络与检测网络共享全图像卷积特征,从而实现几乎无开销的region proposal。 RPN是一个全卷积的网络,可以同时预测每个位置的对象边界和对象得分。 对RPN进行了端到端的训练,以生成高质量的region proposal,Fast R-CNN将其用于检测。 通过共享RPN和Fast R-CNN的卷积特征,我们将RPN和Fast R-CNN进一步合并为一个网络-使用最近流行的带有“注意力”机制的神经网络术语,RPN组件告诉统一网络在哪里查看。 对于非常深的VGG-16模型[3],我们的检测系统在GPU上的帧速率为5fps(包括所有步骤),同时在PASCAL VOC 2007、2012和2007上达到了最新的物体检测精度。 MS COCO数据集,每个图像仅包含300个建议。 在ILSVRC和COCO 2015竞赛中,Faster R-CNN和RPN是在多个赛道中获得第一名的作品的基础。 代码已公开发布。

1 前言

region proposal方法(例如[4])和基于区域的卷积神经网络(RCNN)[5]的成功推动了目标检测的最新进展。 尽管在最初[5]开发中基于区域的CNN(R-CNN)在计算代价上很昂贵,,但得益于通过proposals共享卷积,因此其成本已大大降低。 最近,Fast R-CNN [2]在不考虑region proposal花费的时间时,通过使用非常深的网络[3],实现了接近实时的速度。 现在,proposals是最先进的检测系统中的测试时间计算瓶颈。

region proposal的生成主要依赖于较简单的特征和推理方法。选择性搜索[4]是最流行的方法之一,它根据工程化的底层特征贪婪地合并超像素。 然而,与高效的检测网络相比[2],选择性搜索的速度要慢一个数量级,在CPU实施中每张图片2秒。 EdgeBoxes [6]当前提供建议质量和速度之间的最佳权衡,每张图像0.2秒。 尽管如此,region proposal这一步骤仍然消耗与检测网络一样多的运行时间。

或许有人注意到,Faster R-CNN充分利用了GPU的优势,而研究中使用的region proposal方法则是在CPU上实现的,因此这种运行时比较是不公平的。 加速proposals计算的一种明显方法是在GPU重新实现。 这可能是一种有效的工程解决方案,但是重新实现会忽略下游检测网络,因此会错过共享计算的重要机会。

在本文中,我们证明了算法的变化(使用深度卷积神经网络来计算proposals)会带来一种优雅而有效的解决方案,与检测网络的计算代价相比,proposals的计算几乎是免费的。 为此,我们介绍了新颖的区域提议网络(RPN),该区域提议网络与最新的目标检测网络共享卷积层[1],[2]。 通过在test-time时共享卷积,计算proposals的边际成本很小(例如,每张图片10毫秒)。

我们的观察是,基于区域的检测器(如Fast RCNN)使用的卷积特征图也可用于生成region proposals。 在这些卷积特征之上,我们通过添加一些其他卷积层来构造RPN,这些卷积层同时回归规则网格上每个位置的区域边界和客观性得分。 因此,RPN是一种全卷积网络(FCN)[7],可以专门针对生成检测建议的任务进行端到端训练。

RPN旨在以各种比例和纵横比有效预测region proposals。 与使用图像金字塔(图1,a)或滤波器金字塔(图1,b)的流行方法[8],[9],[1],[2]相比,我们引入了新颖的“锚定”框作为多种比例和纵横比的参考。 我们的方案可以看作是回归参考的金字塔(图1,c),它避免了枚举具有多个比例或纵横比的图像或过滤器。 使用单比例尺图像进行训练和测试时,该模型表现良好,从而提高了运行速度。
Figure 1: Different schemes for addressing multiple scales and sizes. (a) Pyramids of images and feature mapsare built, and the classifier is run at all scales. (b) Pyramids of filters with multiple scales/sizes are run onthe feature map. (c) We use pyramids of reference boxes in the regression functions.

						- 图 1

为了将RPN与快速R-CNN [2]对象检测网络统一起来,我们提出了一种训练方案,该方案在对region proposal任务进行微调与对对象检测进行微调之间交替,同时保持proposal不变。 这种方案可以快速收敛,并产生具有两个任务之间共享的卷积特征的统一网络。

我们在PASCAL VOC检测基准[11]上全面评估了我们的方法,其中具有快速R-CNN的R

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值