分片简介
分片是指将数据拆分,将其分散存放在不同的机器上的过程。有时也用分区(partitioning)来表示这个概念。
几乎所有数据库软件都能进行手动分片(manual sharding)。应用需要维护与若干不同数据库服务器的连接,每个连接还是完全独立的。应用程序管理不同服务器上不同数据的存储,还管理在合适的数据库上查询数据的工作。
Mongodb支持自动分片(autosharding),可以使数据库架构对应用程序不可见,也可以简化系统管理。Mongodb自动处理数据在分片上的分布,也更容易添加和删除分片。
理解集群的组件
Mongodb的分片机制允许你创建一个包含许多台机器(分片)的集群。将数据子集分散在集群中,每个分片维护着一个数据集合的子集。与单个服务器和副本集相比,使用集群架构可以使应用程序具有更大的数据处理能力。
复制是让多台服务器都拥有同样的数据副本,每一台服务器都是其它服务器的镜像,而每一个分片和其它分片拥有不同的数据子集。
为了对应用程序隐藏数据库架构的细节,在分片之前要先执行mongos进行一次路由过程。这个路由服务器维护着一个“内容列表”,指明了每个分片包含什么数据内容。应用程序只需要连接到路由服务器,就可以像使用单机服务器一样进行正常的请求了。路由服务器知道哪些数据位于哪个分片,可以将请求转发给相应的分片。每个分片对请求的响应都会发送给路由服务器,路由服务器将所有响应合并在一起,返回给应用程序。对应用程序来说,它只知道自己是连接到了一台单机mongod服务器。
使用分片的连接:
不使用分片连接:
快速建立一个简单的集群
在单台服务器上快速建立一个集群。首先,使用--nodb选项启动mongo shell:
- $mongo --nodb
使用ShardingTest类创建集群:
- >cluster = new ShardingTest({"shards" : 3 , "chunksize" : 1})
运行这个命令会创建一个包含3个分片(mongod进程)的集群。分别运行在30000,30001,30002端口。默认情况下,ShardingTest会在30999端口启动mongos。接下来就连接到这个mongos开始使用集群。
集群会将日志输出到当前shell中,所以再打开一个shell用来连接到集群的mongos:
- >db = (new Mongo("localhost:30999")).getDB("test")
现在的情况如“使用分片的连接”所示,客户端(shell)连接到了一个mongos。现在就可以将请求发送给mongos了,它会自动将请求路由到合适的分片。客户端不需要知道分片的任何信息,比如分片数量和分片地址。只要有分片存在,就可以向mongos发送请求,它会自动将请求转发到合适的分片上。
首先插入一些数据:
- >for(var i=0;i<100000;i++){
- db.users.insert({"username" : "user"+i , "created_at" : new Date()});
- }
- >db.users.count()
- 100000
可以看到,与mongos进行交互与使用单机服务器完全一样,如上图“不使用分片的连接”。
运行sh.status()可以看到集群的状态:分片摘要信息、数据库摘要信息、集合摘要信息:
- >sh.status()
- ...Sharding Status...
- sharding version : {"_id" : 1 , "version" : 3}
- shards :
- {"_id" : "shard0000" , "host" : "localhost : 30000"}
- {"_id" : "shard0001" , "host" : "localhost : 30001"}
- {"_id" : "shard0002" , "host" : "localhost : 30002"}
- databases:
- {"_id" : "admin" , "partitioned" : false , "primary" : "config" }
- {"_id" : "test" , "partitioned" : false , "primary" : "shard0001" }
sh命令与rs命令很像,除了它是用于分片的:rs是一个全局变量,其中定义了许多分片操作的辅助函数。可以运行sh.help()查看可以使用的辅助函数。如sh.status()的输出所示,当前拥有3个分片,2个数据库(其中admin数据库是自动创建的)。
与上面sh.status()的输出信息不同,test数据库可能有一个不同的主分片(primary shard)。主分片是为每个数据库随机选择的,所有数据都会位于主分片上。MongoDB现在还不能自动将数据分发到不同的分片上,因为它不知道你希望如何分发数据。必须要明确指定,对于每一个集合,应该如何分发数据。
主分片与副本集中的主节点不同。主分片指的是组成分片的整个副本集。而副本集中的主节点是指副本集中能够处理写请求的单台服务器。
要对一个集合分片,首先要对这个集合的数据库启用分片,执行如下命令:
- >sh.enableSharding("test")
现在就可以对test数据库内的集合进行分片了。
对集合分片时,要选择一个片键(shard key)。片键是集合的一个键,MongoDB根据这个键拆分数据。例如,如果选择基于“username”进行分片,MongoDB会根据不同的用户名进行分片。选择片键可以认为是选择集合中数据的顺序。它与索引是个相似的概念:随着集合的不断增长,片键就会成为集合上最重要的索引。只有被索引过的键才能够作为片键。
在启用分片之前,先在希望作为片键的键上创建索引:
- >db.users.ensureIndex({"username" : 1})
现在就可以依据“username”对集合分片了:
- >sh.shardCollection(“test.users” , "username" : 1)
几分钟之后,再次运行sh.status(),可以看到,这次的输出信息比较多:
- ...Sharding Status...
- sharding version : {"_id" : 1 , "version" : 3}
- shards :
- {“_id” : "shard0000" , "host" : "localhost : 30000"}
- {“_id” : "shard0001" , "host" : "localhost : 30001"}
- {“_id” : "shard0002" , "host" : "localhost : 30002"}
- databases:
- {"_id" : "admin" , "partitioned" : false , "primary" : "cofig"}
- {"_id" : "test" , "partitioned" : true , "primary" : "shard0000"}
- test.users chunks:
- shard0001 4
- shard0002 4
- shard0000 5
- {"username" : {$minkey : 1}} -->> {"username" : "user1704"}
- on : shard0001
- {"username" : "user1704"} -->> {"username" : "user24083"}
- on : shard0002
- {"username" : "user24083"} -->> {"username" : "user31126"}
- on : shard0001
- {"username" : "user31126"} -->> {"username" : "user38170"}
- on : shard0002
- {"username" : "user38170"} -->> {"username" : "user45213"}
- on : shard0001
- {"username" : "user45213"} -->> {"username" : "user52257"}
- on : shard0002
- {"username" : "user52257"} -->> {"username" : "user59300"}
- on : shard0001
- {"username" : "user59300"} -->> {"username" : "user66344"}
- on : shard0002
- {"username" : "user66344"} -->> {"username" : "user73388"}
- on : shard0000
- {"username" : "user73388"} -->> {"username" : "user80430"}
- on : shard0000
- {"username" : "user80430"} -->> {"username" : "user87475"}
- on : shard0000
- {"username" : ”user87475“} -->> {"username" : "user94518"}
- on : shard0000
- {"username" : "user94518"} -->> {"username" : {$maxkey : 1}}
集合被分成了多个数据块,每一个数据块都是集合的一个数据子集。这些是按照片键的范围排列的({”username“ :minvalue} -->>{"username" : maxvalue}指出了每个数据块的数据范围)。通过查看输出信息中的"on" : shard部分,可以发现集合数据比较均匀地分布在不同分片上。
在分片之前,集合实际上是一个单一的数据块。分片依据片键将集合拆分为多个数据块,这块数据块被分布在集群中的每个分片上:
注意,数据块列表开始的键值和结束的键值:$minkey和$maxkey。可以将$minkey认为是”负无穷“,它比MongoDB中的任何值都要小。类似地,可以将$maxkey认为是”正无穷“,它比MongoDB中的任何值都要大。片键值的范围始终位于$minkey和$maxkey之间。这些值实际上是BSON类型。只是用于内部使用,不应该被用在应用程序中。如果希望在shell中使用的话,可以用Minkey和Maxkey常量代替。
现在数据已经分布在多个分片上了,接下来做一个查询操作。首先,做一个基于指定的用户名的查询:
- >db.users.find({username : "user12345"})
- {
- "_id" : ObjectId("50b0451951d30ac5782499e6"),
- "username" : "user12345",
- "created_at" : ISODate("2012-11-24T03:55:05.636Z")
- }
可以看到查询可以正常工作,现在运行explain()来看看MongoDB到底是如何处理这次查询的:
- >db.users.find(username : "user12345").explain()
- {
- "clusteredType" : "ParallelSort",
- "shards" : {
- "localhost : 30001" : [{
- "cursor" : "BtreeCursor username_1",
- "nscanned" : 1,
- "nscannedObjects" : 1,
- "n" : 1,
- "millis" : 0,
- "nYields" : 0,
- "nChunkSkips" : 0,
- "isMultiKey" : false,
- "indexOnly" : false,
- "indexBounds" : {
- "username" : [[
- "user12345",
- "user12345"
- ]
- ]
- }
- }]
- },
- "n" : 1,
- "nChunkSkips" : 0,
- "nYields" : 0,
- "nscanned" : 1,
- "nscannedObjects" : 1,
- "millisTotal" : 0,
- "millsAvg" : 0,
- "numQueries" : 1,
- "numShards" : 1
- }
由于”username“是片键,所以mongos能够直接将查询发送到正确的分片上。作为对比,来看一下查询所有数据的过程:
- >db.users.find().explain()
- {
- "clusteredType" : "ParallelSort",
- "shards" : {
- "localhost : 30000" : [{
- "cursor" : "BasicCursor",
- "nscanned" : 37393,
- "nscannedObjects" : 37393,
- "n" : 37393,
- "millis" : 38,
- "nYields" : 0,
- "nChunkSkips" : 0,
- "isMultiKey" : false,
- "indexOnly" : false,
- "indexBounds" : {
- }
- }],
- "localhost : 30001" : [{
- "cursor" : "BasicCursor",
- "nscanned" : 31303,
- "nscannedObjects" : 31303,
- "n" : 31303,
- "millis" : 37,
- "nYields" : 0,
- "nChunkSkips" : 0,
- "isMultiKey" : false,
- "indexOnly" : false,
- "indexBounds" : {
- }
- }],
- "localhost : 30002" : [{
- "cursor" : "BasicCursor",
- "nscanned" : 31304,
- "nscannedObjects" : 31304,
- "n" : 31304,
- "millis" : 36,
- "nYields" : 0,
- "nChunkSkips" : 0,
- "isMultiKey" : false,
- "indexOnly" : false,
- "indexBounds" : {
- }
- }]
- },
- "n" : 100000,
- "nChunkSkips" : 0,
- "nYields" : 0,
- "nscanned" : 100000,
- "nscannedObjects" : 100000,
- "millisTotal" : 111,
- "millsAvg" : 37,
- "numQueries" : 3,
- "numShards" : 3
- }
运行cluster.stop()就可以关闭整个集群了。
- >cluster.stop()