【flink官方文档翻译】DataStream API Tutorial

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013128262/article/details/86635544

原文链接: https://ci.apache.org/projects/flink/flink-docs-release-1.7/tutorials/datastream_api.html#top

Setting up a Maven Project

我们将使用Flink Maven Archetype来创建我们的项目结构。有关此内容的更多详细信息,请参阅Java API快速入门。我们可以这样运行命令:

$ mvn archetype:generate \
    -DarchetypeGroupId=org.apache.flink \
    -DarchetypeArtifactId=flink-quickstart-java \
    -DarchetypeVersion=1.7.0 \
    -DgroupId=wiki-edits \
    -DartifactId=wiki-edits \
    -Dversion=0.1 \
    -Dpackage=wikiedits \
    -DinteractiveMode=false

如果您愿意,可以编辑groupId,artifactId和package。使用上面的参数,Maven将创建一个如下所示的项目结构:

$ tree wiki-edits
wiki-edits/
├── pom.xml
└── src
    └── main
        ├── java
        │   └── wikiedits
        │       ├── BatchJob.java
        │       └── StreamingJob.java
        └── resources
            └── log4j.properties

我们的pom.xml文件已经在根目录中添加了Flink依赖项,并在src / main / java中添加了几个示例Flink程序。我们可以删除示例程序,因为我们将从头开始:

$ rm wiki-edits/src/main/java/wikiedits/*.java

作为最后一步,我们需要将Flink Wikipedia连接器添加为依赖关系,以便我们可以在我们的程序中使用它。编辑pom.xml的依赖项部分,使其如下所示:

<dependencies>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.11</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients_2.11</artifactId>
        <version>${flink.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-wikiedits_2.11</artifactId>
        <version>${flink.version}</version>
    </dependency>
</dependencies>

请注意添加的flink-connector-wikiedits_2.11依赖项。 (此示例和Wikipedia连接器的灵感来自Apache Samza的Hello Samza示例。)

Writing a Flink Program

到了code时间。启动喜欢的IDE并导入Maven项目或打开文本编辑器并创建文件src/main/java/wikiedits/WikipediaAnalysis.java:

package wikiedits;

public class WikipediaAnalysis {

    public static void main(String[] args) throws Exception {

    }
}

该Program现在非常基础,但接下来我们会尽力填写。请注意,我不会在此处提供import语句,因为IDE可以自动添加它们。在本节结束时,如果您只想跳过并在编辑器中输入,我将展示带import的完整代码。

Flink程序的第一步是创建StreamExecutionEnvironment(如果您正在编写批处理作业,则创建ExecutionEnvironment)。这可用于设置执行参数并创建从外部系统读取的源。所以让我们把它添加到main方法:

StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

接下来,我们将创建一个从Wikipedia IRC日志中读取的source:

DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());

这将创建一个我们可以进一步处理的WikipediaEditEvent元素的DataStream。出于本示例的目的,我们确定每个用户在特定时间窗口中添加或删除的字节数,比如说五秒。为此,我们首先要指定我们要在用户名上键入流,也就是说此流上的操作应考虑用户名。在我们的例子中,窗口中编辑的字节的总和应该是每个唯一的用户。为了输入一个Stream,我们必须提供一个KeySelector,如下所示:

KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
    .keyBy(new KeySelector<WikipediaEditEvent, String>() {
        @Override
        public String getKey(WikipediaEditEvent event) {
            return event.getUser();
        }
    });

这提供了一个有String Key(即用户名)的WikipediaEditEvent流。我们现在可以指定此流上的窗口,并根据这些窗口中的元素计算结果。窗口指定要在其上执行计算的Stream切片。在无限的元素流上计算聚合时需要Windows。在我们的例子中,我们将每五秒聚合一次编辑的字节总和:

DataStream<Tuple2<String, Long>> result = keyedEdits
    .timeWindow(Time.seconds(5))
    .fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {
        @Override
        public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {
            acc.f0 = event.getUser();
            acc.f1 += event.getByteDiff();
            return acc;
        }
    });

第一个调用.timeWindow()指定五秒钟的tumbling(非重叠)窗口。第二个调用为每个唯一键指定每个窗口切片的折叠变换。在我们的例子中,我们从初始值("",0L)开始,并在该时间窗口中为用户添加每个编辑的字节差异。生成的Stream包含每隔五秒生成的每个用户的Tuple2 <String,Long>。
剩下要做的就是将流打印到控制台并开始执行:

result.print();

see.execute();

最后一次调用是启动实际Flink工作所必需的。所有操作(例如创建源,转换和接收器)仅用于构建内部运行的流程(graph)。只有在调用execute()时,才会在集群上抛出或在本地计算机上执行此执行流程(graph)。

package wikiedits;

import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;

public class WikipediaAnalysis {

  public static void main(String[] args) throws Exception {

    StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());

    KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
      .keyBy(new KeySelector<WikipediaEditEvent, String>() {
        @Override
        public String getKey(WikipediaEditEvent event) {
          return event.getUser();
        }
      });

    DataStream<Tuple2<String, Long>> result = keyedEdits
      .timeWindow(Time.seconds(5))
      .fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {
        @Override
        public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {
          acc.f0 = event.getUser();
          acc.f1 += event.getByteDiff();
          return acc;
        }
      });

    result.print();

    see.execute();
  }
}

我们可以在ide或者命令行中使用maven运行这个例子:

$ mvn clean package
$ mvn exec:java -Dexec.mainClass=wikiedits.WikipediaAnalysis

第一个命令构建我们的项目,第二个项目执行我们的主类。输出结果类似:

1> (Fenix down,114)
6> (AnomieBOT,155)
8> (BD2412bot,-3690)
7> (IgnorantArmies,49)
3> (Ckh3111,69)
5> (Slade360,0)
7> (Narutolovehinata5,2195)
6> (Vuyisa2001,79)
4> (Ms Sarah Welch,269)
4> (KasparBot,-245)

每行前面的数字是指来自print sink 的哪个并行实例。
这个可以帮助你开始编写自己的Flink程序。想要了解更多,可以参考我们的概念指南和DataStream API。如果想要了解如何在自己的机器上面配置Flink集群并写入数据到kafka,可以参考接下来的额外练习。

Bonus Exercise: Running on a Cluster and Writing to Kafka(额外练习:将任务运行在一个集群上并将数据写到kafka)

接下来请参考本地安装教程在本机安装一个flink集群,并按照Kafka quickstart部署kafka。

第一步我们需要把Flink Kafka connector加到依赖里面所以我们能使用Kafka sink。将以下部分添加到pom.xml的依赖部分:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>

接下来我们需要修改我们的程序。我们用kafka sink替代print() sink。新的代码:

result
    .map(new MapFunction<Tuple2<String,Long>, String>() {
        @Override
        public String map(Tuple2<String, Long> tuple) {
            return tuple.toString();
        }
    })
    .addSink(new FlinkKafkaProducer011<>("localhost:9092", "wiki-result", new SimpleStringSchema()));

需要导入如下的类:

import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.functions.MapFunction;

注意,我们需要用MapFunction将Tuple2<String, Long>流转换成一个字符串流。我们这样做是因为将纯文本字符串写到kafka里面是更方便的。接下来我们创建一个kafka的sink。你需要将hostname和port改成你安装的值。“wiki-result” 就是我们运行程序前,要创建的Kafka流的名字。用maven构建这个项目,因为我们需要在集群运行这个jar文件:

$ mvn clean package

结果jar文件将会出现在目标的子文件夹下:target/wiki-edits-0.1.ja。我们稍后将使用它。

我们已经准备好启动一个flink集群并运行程序将数据写到kafka里面。来到我们安装flink的地方并启动一个本地的集群。

$ cd my/flink/directory
$ bin/start-cluster.sh

我们还需要创建一个kafka topic,这样我们的程序可以往里面写入数据:

$ cd my/kafka/directory
$ bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wiki-results

现在我们准备在我们的本地flink集群运行我们的jar文件了:

$ cd my/flink/directory
$ bin/flink run -c wikiedits.WikipediaAnalysis path/to/wikiedits-0.1.jar

如果所有事情按计划进行的话,命令行输出的结果类似于:

03/08/2016 15:09:27 Job execution switched to status RUNNING.
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to SCHEDULED
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to DEPLOYING
03/08/2016 15:09:27 TriggerWindow(TumblingProcessingTimeWindows(5000), FoldingStateDescriptor{name=window-contents, defaultValue=(,0), serializer=null}, ProcessingTimeTrigger(), WindowedStream.fold(WindowedStream.java:207)) -> Map -> Sink: Unnamed(1/1) switched to SCHEDULED
03/08/2016 15:09:27 TriggerWindow(TumblingProcessingTimeWindows(5000), FoldingStateDescriptor{name=window-contents, defaultValue=(,0), serializer=null}, ProcessingTimeTrigger(), WindowedStream.fold(WindowedStream.java:207)) -> Map -> Sink: Unnamed(1/1) switched to DEPLOYING
03/08/2016 15:09:27 TriggerWindow(TumblingProcessingTimeWindows(5000), FoldingStateDescriptor{name=window-contents, defaultValue=(,0), serializer=null}, ProcessingTimeTrigger(), WindowedStream.fold(WindowedStream.java:207)) -> Map -> Sink: Unnamed(1/1) switched to RUNNING
03/08/2016 15:09:27 Source: Custom Source(1/1) switched to RUNNING

你可以看到每个独立运行的操作。因为性能原因窗口折叠成了一个操作,所以我们只能看到2个操作。在flink里面我们把它称之为chaining。
我们可以通过使用kafka的console consumer从kafka topic里面观察程序的输出:

bin/kafka-console-consumer.sh  --zookeeper localhost:2181 --topic wiki-result

我们同样可以访问 http://localhost:8081来检查flink的dashboard。你可以获取你集群资源和运行job的概览。

如果你点击了当前运行的job则进入一个视图来检查独立操作,如处理对象的数目。

没有更多推荐了,返回首页