题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:
数学归纳法
n=1;jumpWays=1(即:1);
n=2;jumpWays=2(即:1-1,2);
n=3;jumpWays=4(即:1-1-1,1-2,2-1,3);
n=4;jumpWays=8(即:1-1-1-1,1-2-1,2-1-1,1-1-2,2-2,1-3,3-1,4);
f(n)=2^(n-1)
# -*- coding:utf-8 -*-
import math
class Solution:
def jumpFloorII(self, number):
if number < 3:
return number
else:
return math.pow(2,number-1)
注意另一种题目问法:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:(斐波拉契数列)
当只有一级台阶时(n=1),此时青蛙跳一次就可以完成目标;当只有两级台阶时(n=2),青蛙可以一次跳一级台阶分两次完成也可以一次跳两级台阶,此时有两种跳法使得青蛙可以达成目标;
当n>2时,此时我们可以把n级台阶的跳法看成是n的函数:f(n);如果青蛙第一步跳一级台阶,之后的跳法数目就是之后剩余n-1级台阶的跳法数目,即f(n-1);另一种可能的情况就是青蛙第一步跳两级台阶,之后的跳法数目就是之后剩余的n-2级台阶的跳法数目;所以n级台阶的不同跳法的总数是f(n)=f(n-1)+f(n-2)
代码可参考http://blog.csdn.net/xiaolewennofollow/article/details/45271145