用户流失分析

转载 2018年04月17日 10:21:13

被问到过,面经也看到过,啊我首先想到的是机器学习建立模型,今天好好看了看这方面的文章。

用户流失预警模型的建立

小白学数据分析----->流失分析设计

用户的召回与促活:多案例深度解析用户的流失与激活

转赞自知乎

作者:王玮
链接:https://www.zhihu.com/question/26225801/answer/33133761
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

真正去接触用户做调研之前还要解决以下几个问题:

1. 防止用户流失还是挽回流失用户
——目的不同要解答的问题就不同,认清目的才能落实解决方案
2. 到底哪些人是流失用户?
——精准定义流失用户,避免概念模糊带来阻碍
3. 设计一个系统性的诊断框架

——建立诊断框架和逻辑树指导,能大大提高解决问题的效率

以下是对每个问题的分析,以及实际操作举例。

1. 防止用户流失挽回流失用户是两个截然不同的目的

调研用户流失原因最终还要落实在解决方案上,目的不同要求调研最终需要解答的问题也不一样

用户流失原因调研四步经提到的几个问题,描述了不同目的完整的流失调研需要解答的内容:
(1)防止用户流失
用户为什么会流失?(用户流失原因)→用户会继续流失吗?(现有用户的不满意点与流失原因是否一致?)→如何防止用户流失?(应采取什么样的改善措施)
(2)挽回流失用户
用户为什么会流失?(用户流失原因)→流失用户回流的可能性?→什么情况下他们愿意回来?(回流触点)→如何挽回流失用户?(应采取什么样的改善措施)





2. 到底哪些人是流失用户?- 用回访率拐点法找到流失用户

如果你的目的是防止用户流失,最晚的干预时机是什么时候?用户刚流失的时候;
如果你的目的是挽回流失用户,最早的操作时机是什么时候?用户刚流失的时候。

只要找到「用户刚流失的时候」就能找到哪些人是真流失了,以及进行干预的参考时间。

在这里我们曾经犯了一个错误:由于团队运营的是按时付费的产品,KPI是最终收入,我们最初简单粗暴的把用户流失标准定义为用户没有再进行续费的时候。而实际上对于这类产品,在用户还未消费殆尽,但是已经不再使用访问的时候就已经流失了,这样的标准大大延迟了我们对流失用户进行干预的时间。

所以,流失用户应该是在一段时间内未进行关键操作行为的用户

1) 选择关键行为
一般是标志性的关键操作是登录或访问,但是我们在收费邮箱产品的调研中发现:基本上用户停止发信后很快就停止登录了,发信就可以作为另外一个参考性的关键操作行为。

2) 选择时间长度
「一段时间」的间隔长短对各类产品标准也不尽相同,比如社区类产品可能是一个月,但是电商类产品可能是3个月。那如何合理的定义判断用户流失的时间长短呢?

怎样合理地定义用户流失提到一种使用「用户回访率」来选择流失周期的方法,总结如下:

定义用户流失时间长短,需要引入「回访用户」的概念。用户回访率的值可以间接验证流失定义的合理性。
回访用户是指在满足流失时间期限内完全没有进行关键操作的条件,但是流失之后又重新访问的用户。
我们可以计算得到用户回访率,即:
用户回访率 = 回访用户数 / 流失用户数 * 100%

正常情况下,如果流失定义合理,成熟产品回访率应该在5%~10%以下,新兴产品则可能更低。
流失时间间隔长短与回访率成反比,我们可以通过观察 流失期限与回访率的相关曲线,在合理范围内选择拐点来确定合理的流失时间间隔。如图:





3. 设计一个系统性的诊断框架

设计系统性的诊断框架其实要详尽细致地确定调研问题并提出假设

首先,是明确调查对象——调查哪一类用户的流失原因。
是要针对某段时间内流失暴涨的用户进行调查?还是针对一类明显流失高于另外一类的用户进行调查?还是在用户的整个生命周期中进行调查?

然后,是列举流失原因假设。分析方法可以借鉴麦肯锡金字塔模型的 MECE分析法等等。这里流失用户的数据属性和日志分析会带来很大帮助。



我们操作的是对用户整个生命周期中的流失原因进行调研,借鉴了关于网络游戏用户流失原因的简单分析的分析方法:


将用户使用产品的当前状态与归纳的流失类型做对比,分析用户在不同时期的需求内容和流失影响因素。


整理总结操作方法如下:

1) 定义用户生命周期
按照用户使用时长、登录次数、缴费次数等将用户的生命周期划分为四个阶段:接触适应期、探索成长期、成熟追求期、疲惫衰退期。

  • 接触适应期的用户处于接触使用产品的初期,从接触的第一分钟到第一次退出。这段时间用户做的是适应并慢慢接受产品的视觉风格、操作流程、内容等等。截止到用户第二次登录,就算完成了接触期。

  • 探索成长期会根据用户不同而长短不同。这个过程中,用户开始熟悉产品各个环节的功能和设计,并沉淀下越来越多的内容、习惯或者社交关系。如果有一个完善的新用户成长体系就比较容易划分时长。

  • 成熟追求期是用户进入一个比较稳定状态的时期。用户会消费并沉淀更多的内容、形成更规律的使用习惯、采用更深入便捷的操作方式、建立更多的联系人关系等等,成为产品的核心用户群体。

  • 疲惫衰退期的用户逐渐丧失对产品的使用欲望,关键的使用行为逐渐减少,基本不会进行产品中难度较大的操作或者任务。如果产品连让用户极低成本地消耗下时间都不能,就极易产生流失。

2) 归纳流失类型
对提出的流失原因假设大概可以分类为四种:刚性流失、受挫流失、自然流失、市场环境流失。

  • 刚性流失是指很难避免,或者需要较大设计改动才能调整的因素。不同用户刚性流失原因不同,与产品定位、功能、视觉设计都有关。比如垃圾邮件管控严格就容易造成发送推广邮件用户的刚性流失;再比如小清新的用户看到冷峻硬朗的设计。刚性流失最容易出现在用户使用初期,而且流失率较高。

  • 受挫流失是在接触期和探索期造成流失的重要原因,流失因素纷繁复杂,但容易发现和弥补。当用户在使用过程中感受到超出承受范围的不舒适就会受挫离开。比如遇到理解难度极大的内容、指引不够准确的功能、投入较大使用成本之后不能提供便利等等,都会给用户造成厌倦和反感。

  • 自然流失是指用户使用产品一段时间后,发现无内容可看或者对产品功能都失去兴趣,没有追求目标,进入疲惫期产生流失。自然流失是最体现产品设计水平的,最考验产品的生命力。比如核心内容单一,缺乏不同用户的生存空间,不能抓住用户兴趣;再比如产品的周边系统不够丰富(积分、会员等等),不能起到辅佐和协调的作用。

  • 市场环境流失往往很难控制,不只是产品本身的问题,比如微信等OTT产品对短信电话的冲击。

3) 阶段性流失对照
将用户不同生命周期阶段特点与流失类型对照,提出不同时期流失原因假设。简单举个栗子:


现在前期工作完成了,就可以开始设计调查方案了,是不是感觉含混的问题一下条理清晰了?

要制定一个收集所需信息最有效的方式,需要确定的内容:数据来源、调查方法、调研工具、抽样计划,当然还要做好费用预算申请等等。

至于用电话、短信、邮件、实地走访还是搜索引擎等接触用户,用5Why工具、竞品对比还是问卷卡片测试等,见仁见智,各有所长,按实际情况挑选就好。

的答案很值得参考哦。

剩下的,就要看具体的产品了,我就不赘述啦。

PS: 用户流失是一个滞后性的结果,调整流失率只是亡羊补牢的做法,改善用户体验持续不可懈怠呀~(╭ ̄3 ̄)╭

机器学习项目实战之用户流失预警

from __future__ import division import pandas as pd import numpy as npchurn_df = pd.read_csv("D:\\te...
  • qiujiahao123
  • qiujiahao123
  • 2017-03-22 22:44:06
  • 1527

浅谈网络游戏中新用户首日流失的数据分析

本文较为基础,系本新手的个人总结,在总结中进步嘛。有错误恳请指正,谢谢! 网游的用户流失主要集中在新增日,因此本文只谈新玩家的首日流失。 首先,直接上一个简单的图表: 文中所有表中填充的均非真实...
  • q277055799
  • q277055799
  • 2013-11-22 15:23:27
  • 1179

基于数据挖掘的客户流失分析案例

 客户挽留在很多行业都是一个备受关注的问题,比如电信、银行、保险、零售等。要做客户挽留就需要对客户流失进行预警、客户流失原因分析、客户满意度或忠诚度研究、客户生命周期研究等相关问题进行深入而全面...
  • mousever
  • mousever
  • 2015-12-05 22:08:41
  • 1839

python数据分析与机器学习-用户流失预警

    本文针对某网站游戏用户数据,运用python、pandas、matplotlib及sklearn,对初始数据进行数据清理,并结合机器学习的一些算法,建立关于用户流失预警的简单模型,重点是模型评...
  • weixin_35637700
  • weixin_35637700
  • 2018-03-03 13:42:38
  • 102

利用数据挖掘实现电信行业客户流失分析

随着世界经济的全球化、市场的国际化和我国加入WTO步伐的加速,国际化的市场环境要求国内的公众电信运营企业在经营管理上向国外先进的电信运营企业看齐,以迎接电信运营业的国际化竞争。同时随着国家改革的深化,...
  • benpaobagzb
  • benpaobagzb
  • 2015-08-28 21:45:38
  • 1951

[机器学习实战]使用 scikit-learn 预测用户流失

客户流失“流失率”是描述客户离开或停止支付产品或服务费率的业务术语。这在许多企业中是一个关键的数字,因为通常情况下,获取新客户的成本比保留现有成本(在某些情况下,贵5到20倍)。因此,了解保持客户参与...
  • BaiHuaXiu123
  • BaiHuaXiu123
  • 2017-03-14 22:19:08
  • 5013

Python数据分析与机器学习-用户流失预警

import pandas as pd import numpy as np pd.set_option('display.height', 9999) pd.set_option('display...
  • adam_zs
  • adam_zs
  • 2018-01-31 21:16:45
  • 188

基于自然语言识别下的流失用户预警

沙韬伟,苏宁易购高级算法工程师。 曾任职于Hewlett-Packard、滴滴出行。 数据学院特邀讲师。 主要研究方向包括风控、推荐和半监督学习。目前专注于基于深度学习及集成模型下的用户行为模式...
  • leadai
  • leadai
  • 2017-10-31 00:00:00
  • 80

基于机器学习的客流失预警分析

本次内容由于了写在了印象笔记中,图片过多,所以可以点击一下链接进行查看,打不开可以q2271207177 基于机器学习的客流失预警分析...
  • CEOko1007
  • CEOko1007
  • 2017-11-28 17:17:10
  • 299

数据挖掘中的预处理——以电信客户流失问题为例

数据预处理 Step1:数据采样:由于在建立客户流失模型过程中,流失客户往往占所有客户人群的比例很小,这时,最好的办法是保留真个流失客户人群,而对非流失客户人群进行采样,使得客户流失与非客户流失人群在...
  • American199062
  • American199062
  • 2016-05-22 09:06:09
  • 913
收藏助手
不良信息举报
您举报文章:用户流失分析
举报原因:
原因补充:

(最多只允许输入30个字)