题目:
输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如:输入的数组为{1,-2, 3, 10, -4, 7, 2, -5},和最大的子数组为{3, 10, -4, 7, 2},因此输出为该子数组的和18。
最直观的思路:
一个长度为n的数组,总共有n(n + 1) / 2 个子数组;计算出所有子数组的和,即可得到答案,但是其时间复杂度为O(n^2)。不为最优解。
思路:举例分析数组的规律
从上面的实例图去分析的这个例子我们可以总结出如下结论:首先定义两个变量,nCurSum用于存储当前累加子数组的和初始化为0,nGreatestSum用于存取最大的子数组的和初始化为最小的负数。我们遍历这个数组,如果当前nCurSum小于等于0的话(可能为其实时,也可能为中间时),直接将数组当前值赋值给nCurSum,否则将数组当前值加上nCurSum。然后判断nCurSum是否大于nGreatestSum,如果大于则将nCurSum赋值给nGreatestSum,否则进行下次循环,直到循环结束。
代码实现: