连续子数组的最大和(Java)

给定一个包含正负数的整型数组,目标是找到所有子数组的和的最大值。本文介绍了两种解决方案:一是通过维护当前累加子数组的和与最大子数组的和,达到O(n)的时间复杂度;二是利用动态规划,根据以第i个数字结尾的子数组的最大和的递归公式,找出最大和。
摘要由CSDN通过智能技术生成

题目:

输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如:输入的数组为{1,-2, 3, 10, -4, 7, 2, -5},和最大的子数组为{3, 10, -4, 7, 2},因此输出为该子数组的和18。

最直观的思路:

一个长度为n的数组,总共有n(n + 1) / 2 个子数组;计算出所有子数组的和,即可得到答案,但是其时间复杂度为O(n^2)。不为最优解。

思路:举例分析数组的规律

从上面的实例图去分析的这个例子我们可以总结出如下结论:首先定义两个变量,nCurSum用于存储当前累加子数组的和初始化为0,nGreatestSum用于存取最大的子数组的和初始化为最小的负数。我们遍历这个数组,如果当前nCurSum小于等于0的话(可能为其实时,也可能为中间时),直接将数组当前值赋值给nCurSum,否则将数组当前值加上nCurSum。然后判断nCurSum是否大于nGreatestSum,如果大于则将nCurSum赋值给nGreatestSum,否则进行下次循环,直到循环结束。

代码实现:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值