一、题目原文
1.1 英文原版
Problem A: The Need for Bees (and not just for honey)
Honeybees, along with a few other key animals, are critical to human existence on our planet. Along with honey production, these insects provide the vital role of pollination of many trees and plants that provide food for our survival. In 2007, the term Colony Collapse Disorder (CCD) was created to describe the decline of honeybee populations around the world. Bee decline can be attributed to factors such as viruses, pesticides, predators, habitat destruction, and environmental conditions.
Some information to consider (but you may find other helpful information online):
Honeybees can travel up to 20 km, but typically stay within 6 km of their hive.
A typical honeybee hive contains between 20,000 and 80,000 honeybees.
A single honeybee can visit approximately 2,000 flowers or more in a single day.
Because of the high workload during summertime, most honeybees work themselves to death, resulting in a shorter lifespan.
During autumn and wintertime, honeybees may live a bit longer (four to six months).
A honeybee’s level of activity, pollen consumption, and protein abundance impacts its lifespan.
Requirements
Develop a model to determine the population of a honeybee colony over time.
Conduct sensitivity analysis on your model to determine which factors (e.g., lifespans, egg laying rates, fertilized/unfertilized egg ratios, or other factors) have the greatest impact on honeybee colony size.
Model and predict how many honeybee hives you will need to support pollination of a 20-acre (81,000 square meters) parcel of land containing crops that benefit from pollination.
Create a non-technical, one-page blog or infographic for a website that provides the information you developed.
Your PDF solution of no more than 25 total pages should include:
One-page Summary Sheet.
Table of Contents.
Your complete solution.
One-page blog or infographic.
References list.
Note: TheMCM Contest has a 25-page limit to your PDF solution submission. All aspects of your submission count toward the 25-page limit (Summary Sheet, Table of Contents, Reference List, and any Appendices).
1.2 中文翻译
问题 A: 蜜蜂的需求(不仅是蜂蜜)
蜜蜂和其他一些重要动物对人类在地球上的生存至关重要。随着蜂蜜的生产,这些昆虫为许多树木和植物提供了重要的授粉作用,为我们的生存提供了食物。2007年,“蜂群衰竭失调”(CCD)一词被创造出来,用来描述世界各地蜜蜂数量的下降。蜜蜂数量下降可归因于病毒、杀虫剂、捕食者、栖息地破坏和环境条件等因素。
需要考虑的一些信息(但您可以在网上找到其他有用的信息):
蜜蜂可以移动20公里,但通常停留在距离蜂巢6公里的范围内。
一个典型的蜂箱包含20,000到80,000只蜜蜂。
一只蜜蜂可以在一天内拜访大约2000朵或更多的花。
由于夏季的高工作量,大多数蜜蜂工作至死,导致寿命缩短。
在秋天和冬天,蜜蜂可能会活得更久一点(四到六个月)。
要求
开发一个模型来确定一段时间内蜂群的数量。
对您的模型进行敏感性分析,以确定哪些因素(例如,寿命、产蛋率、受精卵/未受精卵比例或其他因素)对蜂群大小的影响最大。
模拟并预测你需要多少个蜂箱来支持一块20英亩(81,000平方米)的土地的授粉,这块土地上的作物可以从授粉中受益。
为提供您开发的信息的网站创建一个非技术性的单页博客或信息图。
总页数不超过25页的PDF解决方案应包括:
一页摘要表。
目录。
您的完整解决方案。
单页博客或信息图。
参考文献列表。
注意:MCM竞赛对您提交的PDF解决方案有25页的限制。您提交的所有方面都将计入25页的限制(摘要表、目录、参考列表和任何附录)。
二、问题介绍
2.1 问题背景
蜜蜂是一种授粉益虫。在传授花粉的过程中,他扮演着不可或缺的角色。有数据表明,世界上76%的粮食作物和84%的植物依靠它们授粉。但近些年以来,蜜蜂的数量在急剧减少。这意味着粮食作物,水果,坚果和鲜花的产量将随之下降。据2008年的一份数据报告显示,所有的授粉昆虫对食用作物产生的价值(不包括牲畜饲料)每年约为1530亿欧元。野生授粉昆虫的持续减少和培养的困难使得谷物的生长越来越依赖于蜜蜂的授粉。造成危机的主要原因包括:不同蜂间的性干扰,外来蜂的入侵,蜜蜂天敌危害,不利的环境因素,病虫害的侵袭,采集竞争,农药及杀虫剂等方面。所以解决蜜蜂减少问题就是解决了一个重要且迫在眉睫的经济问题。从侧面显示出这个建模的关键性。
2.2 问题重述
问题一是要求我们来确定一段时间的蜜蜂数量,即进行时间序列建模,基于时间序列来分析一段时间内的蜜蜂数量。
问题二是在问题一的基础上要求我们进行敏感性分析,以确定是哪些因素对蜜蜂数量影响最大,题目给出了一些因素。即在问题一的模型下,将因素作为参数输入模型中,令每个参数在可能的取值范围内变动,研究和预测这些属性的变动对模型输出值的影响程度大小。
问题三是模拟预测授粉问题。即在土地面积,蜜蜂活动范围一定情况下,用最少的蜜蜂来让蜜蜂活动范围总和覆盖所有土地面积上。然后算出蜂巢数。
问题四就是所指的Blog就是本篇文章。
三、猜想与假设
基于对问题的理解与建模的方便,我们对模型适用背景做出如下合理假设:
我们所研究的蜜蜂种群为典型的中华蜜蜂;
我们研究所处的花田种植的为油松无性系花,种植地区为福建,平均海拔500米。气候条件为年平均温度21.1℃,相对湿度77%,年降雨量1439.1mm左右,开花时间为3-4月份;
我们对蜜蜂研究是一年,故我们将这一年视为平年,且进行数据展示时使用2022年的温度数据;
死亡条件为:生存时间×工作强度≥120时死亡。
四、问题一解决
4.1 微分方程
通过分析可以看出这是一个类似人口数量模型,所以我们首先使用微分方程进行建模。为方便计算我们假设蜜蜂增长率为常数(或单位时间内蜜蜂数量的增长量与那一时刻蜜蜂数量呈正相关)。可看作连续可微函数,到时间內蜜蜂增长量为
于是N(t)满足微分方程
可分离变量解微分方程得
4.2 Logistic模型
但是,我们知道,在现实中,某一种群数量并不会呈指数形式一直增长下去,自然情况下任何种群数量都会逐渐到达某一数值附近,并在其上下浮动。在生物学中,我们一般称这个值为环境最大容纳量。它又称为环境负荷量最大负荷量。它是指在有限的环境资源下,能够到达的最大种群密度。其一般用表示。
4.3 模型的建立
首先我们需要对出生率进行定义,我们发现蜂群中由一只蜂王进行产卵,其产卵数量主要受温度的影响,故我们搜寻了中华蜜蜂蜂王的产卵数量随温度变化的数据,并通过多项式拟合的方式拟合到一个函数,下列为中华蜜蜂蜂王的产卵数量随温度变化的函数:
其中文献数据表明,当温度低于14℃或高于35℃时蜂王的产卵数量低到可以忽略不计,且日产卵量不可能为负数,故其它情况视为0。
其函数图像如图所示。

对应如下代码:
# 蜜蜂的日出生量,temp为温度
def birth(t):
e = -0.0672 * pow(t, 4) + 6.3859 * pow(t, 3) - 228.23 * pow(t, 2) + 3661.4 * t - 21443
if e < 0:
return 0 # 日出生量不会小于0
return e
下面我们对蜜蜂的死亡率进行定义。蜜蜂共有四种不同的蜜蜂年龄组配分别是卵、幼虫、蛹、成虫。其中只有工蜂成虫才会进行采集花粉的工作。数据表明,中华蜜蜂在不采蜜的季节寿命可以达到3~4个月,而采蜜阶段寿命仅有40天左右,事实证明工蜂的寿命与其工作强度密切相关。
故我们可总结蜜蜂的寿命受其工作强度影响的改变。
我们定义一个名为bee的类:
class bee:
def __init__(self, bee_type, days):
self.bee_type = bee_type
self.days = days
下面我们对蜜蜂的死亡条件进行定义。
工蜂的寿命共有120天,工作强度量化为一天消耗的真实寿命。换句话说,某天的工作强度为3,那视为这一天工蜂的寿命度过了3天,当工蜂的寿命到达120天后,工蜂死亡。
卵期3天,幼虫期6天,蛹期11天,这三个阶段工蜂不参与工作,故将其工作强度视为1,成虫后工蜂正常参与工作,其寿命受花粉浓度和飞行距离的影响,这里我们简化为使用现有数据对工作强度进行多项式拟合,下列为中华蜜蜂工蜂的工作强度随时间变化的函数:
其中为全年的第天,工作强度不会小于1。

对应如下代码:
# 蜜蜂的工作强度,day为一年的第几天
def workingIntensity(day):
e = -0.0000000113 * pow(day, 4) + 0.000009 * pow(day, 3) - 0.0025 * pow(day, 2) + 0.2555 * day - 1.8921
if e < 1:
return 1 # 工作强度不会小于1
return e
增加部分逻辑代码后,我们得到如下的Python代码:
# 蜜蜂的日出生量,temp为温度
def birth(t):
e = -0.0672 * pow(t, 4) + 6.3859 * pow(t, 3) - 228.23 * pow(t, 2) + 3661.4 * t - 21443
if e < 0:
return 0 # 日出生量不会小于0
return e
# 蜜蜂的工作强度,day为一年的第几天
def workingIntensity(day):
e = -0.0000000113 * pow(day, 4) + 0.000009 * pow(day, 3) - 0.0025 * pow(day, 2) + 0.2555 * day - 1.8921
if e < 1:
return 1 # 工作强度不会小于1
return e
class bee:
def __init__(self, bee_type, days):
self.bee_type = bee_type
self.days = days
if __name__ == '__main__':
# month_day = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
life_limit = 120
temp = [13.5, 13.5, 15.5, 16, 1.5, 11, 3.5, 13, 5.5, 12.5, 10, 9, 9.5, 9.5, 14.5, 2.5, 11.5, 11, 12, -1, 13, -4.5,
16, 12.5, 13, 16.5, 16, 11.5, 11, 8.5, 10, 9.5, 10, 10, 10.5, 0.5, 9.5, 11, 2, 11, 12, 12.5, 12, 13.5, -7.5,
-11.5, -11, 9, -12, 7, 5, 7, 8, 5, 11, 11, 16.5, 17, 10, 16.5, 13, 21, 22, 14, 13, 13, 14, 14.5, 19, 21,
20.5, 23, 22, 18, 11.5, 22, 20, 20, 20, 17, 12.5, -0.5, 16.5, 19, 21, 14.5, 11, 16, 21.5, 17.5, 12, 12,
14.5, 17.5, 19, 18.5, 19.5, 20, 21, 23, 24.5, 25, 25, 23, 20, 15.5, 17, 16, 18, 16.5, 21, 23.5, 25, 25.5,
28.5, 28.5, 21.5, 23.5, 23.5, 18, 16, 16.5, 20.5, 20.5, 22, 23, 23, 21.5, 21, 22, 21.5, 19.5, 21.5, 17,
14.5, 15.5, 18.5, 21, 22, 24, 21, 20, 20.5, 21, 23.5, 21, 21.5, 23.5, 26.5, 28.5, 26, 26.5, 29.5, 27.5,
28.5, 29.5, 25, 28.5, 19.5, 21.5, 23, 22, 23, 23.5, 23.5, 24, 25, 24.5, 26.5, 28.5, 27.5, 27, 29, 31.5,
30.5, 31.5, 31, 30.5, 30, 29, 27, 28.5, 29, 29, 30, 30, 29.5, 30.5, 31.5, 30, 33, 33.5, 33, 34.5, 32.5, 36,
33, 33, 31.5, 33.5, 32.5, 33, 30.5, 34, 31, 34, 33.5, 31.5, 31.5, 32, 30.5, 33, 32.5, 29.5, 29, 30.5, 31.5,
32.5, 30.5, 30.5, 31.5, 32, 32.5, 32.5, 32.5, 32, 31.5, 33, 32.5, 32, 32, 32.5, 34.5, 35, 33.5, 31.5, 32.5,
34, 34, 30, 30.5, 32, 31, 29.5, 30, 31, 30, 31, 28.5, 27.5, 28.5, 29, 27, 29.5, 29.5, 31, 29.5, 30, 29.5,
29, 31, 29.5, 27, 28, 28.5, 25.5, 26.5, 28, 28, 28.5, 29, 30.5, 30, 29.5, 30.5, 30.5, 30.5, 24.5, 24.5, 24,
23, 25.5, 21, 21, 22.5, 24, 25.5, 26, 24, 20.5, 19, 20.5, 21.5, 25.5, 25.5, 24.5, 21.5, 19.5, 22.5, 24.5,
22, 21, 22, 19.5, 18, 18.5, 19, 18, 18, 18.5, 19.5, 21.5, 22, 25.5, 24, 26, 24, 20.5, 19.5, 18, 23.5, 24,
23, 22.5, 20.5, 19.5, 19.5, 19, 17.5, 21, 20, 25, 23, 12.5, 11.5, 13.5, 17, 15.5, 13.5, 13.5, 14, 17.5, 19,
17.5, 13, 14, 12.5, 9, 10.5, 11.5, 8, 7.5, 11, 12.5, 13, 13, 10.5, 10.5, 10, 11, 12.5, 11.5, 11.5, 11, 12.5]
bee_sum = int(input("请输入蜜蜂总量:"))
adult = int(bee_sum * 0.9)
notAdult = bee_sum - adult
bees = []
for i in range(0, adult):
bees.append(bee(bee_type=1, days=20))
for i in range(0, notAdult):
bees.append(bee(bee_type=0, days=0))
print(f'第{0}天,蜜蜂总量:{bee_sum},非成虫数量:{notAdult},成虫数量:{adult}')
# print(f'{0},{bee_sum},{notAdult},{adult}')
for day in range(0, 365 * 2):
death = 0
notAdult = 0
adult = 0
# 遍历更新蜜蜂信息,小于20天+1,等于20天+1并进化为成虫,小于等于120天+工作强度,大于120天死亡
for bee_item in bees:
if bee_item.days < 20:
bee_item.days += 1
notAdult += 1
elif bee_item.days == 20:
bee_item.days += 1
bee_item.bee_type = 1
adult += 1
elif bee_item.days <= life_limit:
bee_item.days += workingIntensity(day % 365 + 1)
adult += 1
if bee_item.days > life_limit and bee_item.bee_type != -1:
bee_item.bee_type = -1
adult -= 1
death += 1
# 产下新蜜蜂
for i in range(0, int(birth(temp[day % 365]))):
bees.append(bee(bee_type=0, days=0))
notAdult += 1
bee_sum = adult + notAdult
print(
f'第{day + 1}天,蜜蜂总量:{bee_sum},非成虫数量:{notAdult},成虫数量:{adult},出生数量:{int(birth(temp[day % 365]))},死亡数量:{death},当天工作强度{workingIntensity(day % 365 + 1)}')
# print(f'{day + 1},{bee_sum},{notAdult},{adult}')
下面,我们使用Python模拟10000只蜜蜂从1月1日开始的数量变化,我们设置起始9000只成虫、1000只非成虫,由于起始状态的9000只成虫、1000只非成虫处于相同相同状态,故他们会分别在未来的某一天同时死亡,这在现实生活中并不存在,故会对我们模拟数据造成影响。为了避免这种情况发生,我们选择先令这些蜜蜂自然模拟一年后再记录数据,下图为模拟后结果(第二年)。

在该模型下蜜蜂种群可以实现自主繁殖,且模型数据与现实情况相符。
五、结语
问题二是对问题一的敏感性分析,问题三则涉及到花粉密度及部分数学问题,在此我们不做过多探讨。
篇幅有限,未尽之处,欢迎大家在评论区探讨。