大数据真实电商数据仓库全流程开发详解

主要内容为:
第一部分:数据仓库基础理论与技术圈
  第一章:互联网电商大数据环境
  第二章:商业智能与数据仓库基础理论
  第三章:维度建模基础理论
  第四章:电商大数据一般架构
  第五章:电商数据平台从零搭建方案参考
第二部分:Hadoop&Hive数据仓库技术
  第一章:电商全分布式开发环境搭建
  第二章:Hadoop&Hive光速入门
  第三章:HiveSQL语言全解释
  第四章:Hive内部运行机制
  第五章:HiveSQL优化
第三部分:电商核心业务知识详解
  第一章:订单商品模块
  第二章:客户模块
  第三章:活动模块
  第四章:流量模块
  第五章:电商用户画像项目

详情:

第一部分:数据仓库基础理论与技术圈

第一章:互联网电商大数据环境
1.职业环境
2.可能会有哪些重点项目
3.可能会有哪些重点方向
4.每天会做什么工作
5.电商项目的生命周期
6.Hadoop在国内的情景
7.待遇怎么样
8.工作机会介绍
9.关于猎头的知识

第二章:商业智能与数据仓库基础理论
1.BI的作用
2.BI的构建
3.数据仓库基础理论:数据仓库,企业信息工厂,维,事实表
4.数据仓库基础理论:数据集市,ODS,元数据,ETL,OLAP

第三章:维度建模基础理论
1.维度建模-基础术语
2.维度建模-建模中的三种模型
3.维度建模-维度的类型
4.建模的一般过程
5.库存管理业务建模实例
6.电信DW建模实例演示

第四章:电商大数据一般架构
1.数据流向介绍
2.电商源系统和源数据特点
3.数据抽取与装载策略
4.DW层数据特点
5.DM层数据特点
6.元数据管理
7.报表层数据特点

第五章:电商数据平台从零搭建方案参考
1.技术选型建议
2.真实电商数据仓库架构解密
3.真实电商数据仓库架构各层实现细节
4.中等规模电商数据平台建设情况参考
调度系统,集群,元数据的管理,对外提供数据,团队情况
5.中等规模电商数据平台实现方式参考
开发与测试环境的实现,数据访问实现,提供数据的实现

第二部分:Hadoop&Hive数据仓库技术

第一章:电商全分布式开发环境搭建
1.hadoop2.x全分布式搭建,
三台虚拟机,系统 CentOS 6.5 32位 * 3;
Hadoop-2.2.0-bin.tar.gz
2.Hive的搭建(数据仓库,ETL过程),
apache-hive-0.13.0-bin.tar.gz;
mysql数据库创建

第二章:Hadoop&Hive光速入门
1.Hadoop概要
2.HDFS介绍(HDFS可靠性介绍,Block解析)
3.MapReduce介绍(MapReduce工作过程,JOB调度机制,
内部任务优化机制,MapReduce错误处理机制)
4.YARN介绍,YARN特性,YARN如何解决MapReduce1.0的问题
5.Hadoop进程介绍(Namenode,Secondary Namenode,DataNode,JobTracker,TaskTracker,ResourceManager,ResourceManager,NodeManager)
6.Hadoop工作过程(详细内部工作过程,读取文件过程,写入文件过程)
7.HDFS终端命令全解释,管理命令21个,文件操作命令30个
8.常用配置参数详细解析,core-site.xml,hdfs-site.xml,hive-site.xml,mapred-site.xml,yarn-site.xml真实环境配置

Hive光速入门
1.Hive介绍,Hive的helloword
2.Hive的部件:用户接口,元数据存储,执行部件,HDFS存储
3.Hive的常用进程与服务:
Service List: beeline cli help hiveserver2 hiveserver hwi jar lineage metastore metatool orcfiledump rcfilecat
4.Metastore的三种连接模式
5.Hive和普通关系数据库比较
6.Hive的cli与Commands
7.Hive常用配置参数详细解析hive-site.xml

第三章:HiveSQL语言全解释
1.Hive数据类型
2.数据定义语句DDL
3.数据操纵语句DML
4.数据查询,分组,去重,关联,等
5.函数UDF,UDAF,UDTF

第四章:Hive内部运行机制
1.Hive内部存储格式
2.MapReduce执行过程概览
3.HiveSQL的join与group by的实现过程
3.Hive的执行生命周期七大步骤:
CliDriver进行交互模式,读取命令processLine进行分割处理,
ProcessCmd判断为操作系统命令进行相应处理,
CommandProcess判断为Hive设置语句进行相应处理,如果判断为调用Driver处理,
获取执行成功或者失败的结果,执行中间文件与临时文件清理
4.Hive架构与执行流程分析:
Parser Driver,Semantic Analyzer
Logical Plan Gen,Logical Optimizer
Physical Plan Gen,Physical Optimizer
5.通过Explain得到执行计划来观察Hive行为
6.Hive源码导读

第五章:HiveSQL优化
1.小文件问题及其解决方案:小文件是如何产生的,有什么影响,在源头上控制小文件,小文件解决的3个办法
2.优化方法之选择最佳实现流程/最优模型设计:最佳实现流程方案举例,平级数量或者金额的汇总最优模型
3.优化方法之解决数据倾斜问题:实际数据倾斜问题举例与解决方案
4.优化方法之减少与增加map/reduce的个数:map数是如何决定的,reduce是如何决定的,
如何减少与增加map/reduce的个数,哪些场景需要减少与增加map/reduce的个数
5.优化方法之并行或者共享输入:脚本内并行与脚本外并行,共享输入举例
6.Hadoop的MAP数计算方法
7.Hadoop的REDUCE数计算方法

第三部分:电商核心业务知识详解

第一章:订单商品模块
1.订单表和商品表业务知识:订单主表,订单商品表,订单详细信息表,购物车表,商品信息表
2.构建数据仓库DM层订单宽表,订单商品宽表,订单指标表,商品信息汇总表
3.计算关于订单和商品的常见指标:最后一次移动端购买时间,近30天购买金额,客单价等
5.关于商品的常用指标信息及其计算方法和每个字段的由来,哪些地方可能会用到及其业务含义解析
6.数据开发的方法与流程,订单宽表,订单商品,订单指标表,商品信息汇总表程序编写

第二章:客户模块
1.客户表的业务知识:每个字段的由来,哪些地方可能会用到及其业务含义解析
2.关于用户的营销类指标参考信息及其计算方法
3.用户营销参考信息程序编写

第三章:活动模块
1.活动与订单关系的业务知识:每个字段的由来,哪些地方可能会用到及其业务含义解析
2.关于活动类常用指标参考信息及其计算方法
3.活动与订单指标指标表程序编写

第四章:流量模块
1.营销关注的流量业务知识:营销常用PV,UV和字段说明及其业务含义解析
2.关于流量的常计算指标说明及其计算方法
3.最后一次访问信息表,第一次访问信息表,访问次数表,访问明细表程序编写

第五章:电商用户画像项目
1.用户画像简介
2.用户画像模型创建
3.构建电商用户画像模型
4.用户画像模型详细分析
5.用户画像模型表落地
6.数据ETL过程-数据开发
 

http://feixueteam.net/thread-389-1-1.html 
  • 2
    点赞
  • 1
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
一、课程简介<br /> <br /> 随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。<br /> <br /> 二、课程内容<br /> <br /> 本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。<br /> <br /> <br /> 三、课程目标<br /> <br /> 本课程以国内商巨头实际业务应用场景为依托,对商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统面的掌握各项数仓项目技术,轻松应对各种数仓难题。<br /> <br /> 四、课程亮点<br /> 本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。<br /> <br /> <br /> <div> <br /> </div>
<span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于商,好的推荐系统可以大大提升商企业的销售业绩。国内外的知名商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br /><br /><span style="color:#404040;">打造的商推荐系统项目,就是以经过修改的中文亚马逊商数据集作为依托,并以某商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br /><br /><span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br /><br /><span style="color:#404040;">适合人群:</span><br /><span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3.有商领域开发经验,希望拓展商业务场景、丰富经验的开发人员</span><br /><span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span>
<p> <span style="color:#3D3D3D;">本教程为授权出品</span> </p> <p> <span style="color:#3D3D3D;"><br /> </span> </p> <p> <span style="color:#3D3D3D;"><span style="color:#404040;">一、课程简介</span><br /> <span style="color:#404040;">数据仓库(Data Warehouse,可简写为DW或DWH),是面向分析的集成化数据环境,为企业决策制定过程,提供系统数据支持的战略集合,是国内外各大公司正在重点投入的战略级技术领域。</span></span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">二、课程内容</span><br /> <span style="color:#404040;">《大数据商数仓项目实战》视频教程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。</span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">三、课程目标</span><br /> <span style="color:#404040;">本课程以国内商巨头实际业务应用场景为依托,对商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、周、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统面的掌握各项数仓项目技术,轻松应对各种数仓难题。</span> </p> <p> <span style="background-color:#FFFFFF;"><br /> </span><span style="color:#404040;">四、课程亮点</span><br /> <span style="color:#404040;">本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。</span> </p> <p> <br /> </p>
DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复。程序主要针对0xc000007b问题设计,可以完美修复该问题。本程序中包含了最新版的DirectX redist(Jun2010),并且部DX文件都有Microsoft的数字签名,安放心。 本程序为了应对一般脑用户的使用,采用了易用的一键式设计,只要点击主界面上的“检测并修复”按钮,程序就会自动完成校验、检测、下载、修复以及注册的部功能,无需用户的介入,大大降低了使用难度。在常规修复过程中,程序还会自动检测DirectX加速状态,在异常时给予用户相应提示。 本程序适用于多个操作系统,如Windows XP(需先安装.NET 2.0,详情请参阅“致Windows XP用户.txt”文件)、Windows Vista、Windows 7、Windows 8、Windows 8.1、Windows 8.1 Update、Windows 10,同时兼容32位操作系统和64位操作系统。本程序会根据系统的不同,自动调整任务模式,无需用户进行设置。 本程序的V4.0版分为标准版、增强版以及在线修复版。所有版本都支持修复DirectX的功能,而增强版则额外支持修复c++的功能。在线修复版功能与标准版相同,但其所需的数据包需要在修复时自动下载。各个版本之间,主程序完相同,只是其配套使用的数据包不同。因此,标准版和在线修复版可以通过补扩展包的形式成为增强版。本程序自V3.5版起,自带扩展功能。只要在主界面的“工具”菜单下打开“选项”对话框,找到“扩展”标签,点击其中的“开始扩展”按钮即可。扩展过程需要Internet连接,扩展成功后新的数据包可自动生效。扩展用时根据网络速度不同而不同,最快仅需数秒,最慢需要数分钟,烦请耐心等待。如扩展失败,可点击“扩展”界面左上角小锁图标切换为加密连接,即可很大程度上避免因防火墙或其他原因导致的连接失败。 本程序自V2.0版起采用新的底层程序架构,使用了异步多线程编程技术,使得检测、下载、修复单独进行,互不干扰,快速如飞。新程序更改了自我校验方式,因此使用新版本的程序时不会再出现自我校验失败的错误;但并非取消自我校验,因此程序安性与之前版本相同,并未降低。 程序有更新系统c++功能。由于绝大多数软件运行时需要c++的支持,并且c++的异常也会导致0xc000007b错误,因此程序在检测修复的同时,也会根据需要更新系统中的c++组件。自V3.2版本开始使用了新的c++扩展包,可以大幅提高工业软件修复成功的概率。修复c++的功能仅限于增强版,标准版及在线修复版在系统c++异常时(非丢失时)会提示用户使用增强版进行修复。除常规修复外,新版程序还支持C++强力修复功能。当常规修复无效时,可以到本程序的选项界面内开启强力修复功能,可大幅提高修复成功率。请注意,请仅在常规修复无效时再使用此功能。 程序有两种窗口样式。正常模式即默认样式,适合绝大多数用户使用。另有一种简约模式,此时窗口将只显示最基本的内容,修复会自动进行,修复完成10秒钟后会自动退出。该窗口样式可以使修复工作变得更加简单快速,同时方便其他软件、游戏将本程序内嵌,即可进行无需人工参与的快速修复。开启简约模式的方法是:打开程序所在目录下的“Settings.ini”文件(如果没有可以自己创建),将其中的“FormStyle”一项的值改为“Simple”并保存即可。 新版程序支持命令行运行模式。在命令行中调用本程序,可以在路径后直接添加命令进行相应的设置。常见的命令有7类,分别是设置语言的命令、设置窗口模式的命令,设置安级别的命令、开启强力修复的命令、设置c++修复模式的命令、控制Direct加速的命令、显示版权信息的命令。具体命令名称可以通过“/help”或“/?”进行查询。 程序有高级筛选功能,开启该功能后用户可以自主选择要修复的文件,避免了其他不必要的修复工作。同时,也支持通过文件进行辅助筛选,只要在程序目录下建立“Filter.dat”文件,其中的每一行写一个需要修复文件的序号即可。该功能仅针对高级用户使用,并且必须在正常窗口模式下才有效(简约模式时无效)。 本程序有自动记录日志功能,可以记录每一次检测修复结果,方便在出现问题时,及时分析和查找原因,以便找到解决办法。 程序的“选项”对话框中包含了7项高级功能。点击"常规”选项卡可以调整程序的基本运行情况,包括日志记录、安级别控制、调试模式开启等。只有开启调试模式后才能在C
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

打赏

jqsaebkc

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值