最大子数组问题

第四章 分治策略 练习4.1-5

使用如下思想为最大子数组问题设计一个非递归的、线性时间的算法。从数组的左边界开始,由左往右处理,记录到目前为止已经处理过的最大子数组。若已知A[1...j] 的最大子数组,基于如下性质将解扩展为A[1...j+1] 的最大子数组:A[1...j+1] 的最大子数组要么是A[1...j] 的最大子数组,要么是某个子数组A[i...j+1] (1<= i <= j+1)。在已知A[1...j] 的最大子数组的情况下,可以在线性时间内找出开始A[i...j+1] 的最大子数组。

基于java的实现方法如下:

/**
 * 最大子数组
 * Created by Sherlock on 2016/2/26.
 */
public class MaxSubArray<T extends Comparable<T>> {

    private List<T> list = new ArrayList<>();
    private final Addition<T> addition;

    public MaxSubArray(List<T> list, Addition<T> addition){
        this.list.addAll(list);
        this.addition = addition;
    }

    /**
     * @param zero 零值,用于比较
     * @return 返回 最大子数组
     */
    public List<T> findMaxSubArray(T zero){
        //初始A[i...j+1] = A[0]
        T frontierSum = list.get(0);
        int frontierL = 0;//记录始坐标
        int frontierR = 0;//记录末坐标
        T maxSubSum = list.get(0);
        int left = 0;//记录始坐标
        int right = 0;//记录末坐标

        for (int i = 1; i < list.size(); i++){
            //如果前面的A[i...j+1]<=0,直接弃用,更新为最新值
            if (frontierSum.compareTo(zero) <= 0){
                frontierSum = list.get(i);
                frontierL = i;
                frontierR = i;
            }else{
                //累加,并更新末坐标
                frontierSum = addition.add(frontierSum,list.get(i));
                frontierR = i;
            }
            //比较最大子数组的和与A[i...j+1]的和的大小,如果小于A[i...j+1],则更新当前i的最大子数组并记录坐标
            if (maxSubSum.compareTo(frontierSum) < 0){
                maxSubSum = frontierSum;
                left = frontierL;
                right = frontierR;
            }
        }

        //返回最大子数组subList(fromIndex,toIndex)是[fromIndex,toIndex)取值的,所以这里加1
        return list.subList(left,right+1);
    }

    //实现加法运算
    public interface Addition<T> {
        T add(T t1, T t2);
    }
}

测试代码如下:

public class Main {

    public static void main(String[] args) {
        maxSubArray(0);
    }

    private static void maxSubArray(int zero){
        int[] numbers = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -22, 15, -4, 7};
        List<Integer> data = new ArrayList<>();
        for (int i = 0; i < numbers.length; i++){
            data.add(i,numbers[i]);
        }
        MaxSubArray<Integer> list = new MaxSubArray<>(data, new MaxSubArray.Addition<Integer>() {
            @Override
            public Integer add(Integer t1, Integer t2) {
                return t1 + t2;
            }
        });
        data = list.findMaxSubArray(zero);
        System.out.println("最大子数组如下");
        int sum = 0;
        for (int i : data){
            System.out.print(i+" ");
            sum += i;
        }
        System.out.println("\n其和为:"+sum);
    }
}

运行测试代码,结果如下:

最大子数组如下
18 20 -7 12
其和为:43

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值