【深度学习】Drop out

Dropout是一种有效的防止神经网络过拟合的方法,通过在训练过程中以一定概率p随机忽略部分神经元,降低了网络的复杂度。在测试阶段,所有神经元都参与计算,为保持一致性,可以通过调整权重来平衡训练与测试阶段的影响。通常,dropout的概率p取值为0.5。
摘要由CSDN通过智能技术生成

来源:Dropout: A Simple Way to Prevent Neural Networks from Overfitting

1. 原理

在每个训练批次的前向传播中,以概率p保留部分神经元。目的是:简化神经网络的复杂度,降低过拟合风险。

\small \\Z_{l+1} = W\cdot A_{l} + b \\A_{l+1} = f(Z_{l+1}) \\\Rightarrow \\r_{l} \sim Bernoulli(p) \\ \~A_{l} = r_{l} * A_{l} \\Z_{l+1} = W\cdot \~A_{l} + b \\A_{l+1} = f(Z_{l+1})

根据保留概率p计算一个概率向量r([1,0,1,0,0,1,1....]), 然后保留部分节点。

2. 注意点

因为dropout一般只使用在训练时,而测试时所有的神经元都会保留。为了使训练和测试时对应,可以有以下两种方法:

1)测试时:在每个神经元对应的权重w需乘以p,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值