来源:Dropout: A Simple Way to Prevent Neural Networks from Overfitting
1. 原理
在每个训练批次的前向传播中,以概率p保留部分神经元。目的是:简化神经网络的复杂度,降低过拟合风险。
根据保留概率p计算一个概率向量r([1,0,1,0,0,1,1....]), 然后保留部分节点。
2. 注意点
因为dropout一般只使用在训练时,而测试时所有的神经元都会保留。为了使训练和测试时对应,可以有以下两种方法:
1)测试时:在每个神经元对应的权重w需乘以p,即