【机器学习】分类器性能指标

1. 错误率:

e = 错误分类个数/总样本数

2. 正确率:

TP:分类正确正例

TN:分类正确负例

FP:分类错误正例

FN:分类错误负例

precision = 分类正确的正类/(预测结果中被分为正类的个数)  = TP/(TP+FP)

3. 召回率:

recall = 分类正确的正类/(所有正类的个数) = TP/(TP+FN)

4. F1 score

F1 = \frac{2PR}{P+R}

5. ROC曲线

ROC(receiver operating characteristic)“受试者工作特征”。ROC纵轴为“真正例率”(TPR),横轴是“假正例率”(FPR),其中:

TPR = 分类正确正例/ 所有正例 = TP/(TP+FN)

FPR = 分类错误的正例/ 所有负例 = FP/(TN+FP)

生成过程:

① 将分类结果按照分成正例的概率从小到大排序,最左边即最不可能是正例的例子;

② 从左往右依次将每个样例设为阈值,阈值左边(包含当前样例)均判为正例,右边均判为负例;

③ 然后计算对应的TPR和FPR,即为RUC的一个坐标;(计算tipes:假设上一轮的坐标为(x,y)若当前的阈值是正例则更新y = y + 1/正例个数,若当前值是反例则更新x= x + 1/反例个数)。

由上图:

① 左上角表示性能最佳的分类器(所有样例分类正确),右下角表示性能最差的分类器(所有样例分类错误)。

②ROC曲线越靠左上角,分类器性能越好。 

③图中的虚直线表示“随机猜测”的ROC线,也就是有50%的样例被预测错误;

③ ROC所围成的区域的面积称为AUC,AUC越大分类效果越好。AUC > 0.5, 效果好于随机猜测。AUC = 0.5, 效果和随机猜测一样。AUC<0.5, 效果不如随机猜测。AUC代表了分类器的平均性能。

图中2和3的ROC曲线覆盖了1的,说明2和3的分类性能好;2和3的ROC曲线大部分重合,为了判断哪个更好,可以使用AUC面积来比较。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值