题意:有M个机器,有N个任务。每个任务必须在Si 或者以后开始做,在Ei 或者之前完成,完成任务必须处理Pi 个时间单位。其中,每个任务可以在任意(空闲)机器上工作,每个机器的同一时刻只能工作一个任务,每个任务在同一时刻只能被一个机器工作,而且任务做到一半可以打断,拿去其他机器做。能否在规定时间内把任务做完。
思路:关键是抽象出模型,建立网络图。以0为源点,与每个任务之间连一条容量是p的边,任务与之对应的时间段的每一天连一个容量是1的边,最后所有的天数,与汇点(最大的点加1)连一条容量是m的边,判断sum(pi)是不是等于最大流。
**注意一点的是,模板的数组开小会TLE
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define cl(a,b) memset(a,b,sizeof(a))
const int maxn=20006;
const int inf=1<<28;
const int nv=1100;
const int ne=501000;
struct isap{
int n,size;
int head[nv];
int dis[nv],gap[nv],cur[nv],pre[nv];
int maxflow;
struct edge{
int v,w,next;
edge(){}
edge(int _v,int _w,int _next):v(_v),w(_w),next(_next){}
}E[ne];
void init(int x){
n=x,size=0;
//for(int i=0;i<=n;i++)head[i]=-1;
cl(head,-1);
}
void insert(int u,int v,int w){
E[size]=edge(v,w,head[u]);
head[u]=size++;
E[size]=edge(u,0,head[v]);
head[v]=size++;
}
int maxFlow(int src,int des){
maxflow=0;
for(int i=0;i<=n;i++){
dis[i]=gap[i]=0;
cur[i]=head[i];
}
int u=pre[src]=src;
int aug=-1;
while(dis[src]<n){
loop:for(int &i=cur[u];i!=-1;i=E[i].next){
int v=E[i].v;
if(E[i].w&&dis[u]==dis[v]+1){
aug=min(aug,E[i].w);
pre[v]=u;
u=v;
if(v==des){
maxflow+=aug;
for(u=pre[u];v!=src;v=u,u=pre[u]){
E[cur[u]].w-=aug;
E[cur[u]^1].w+=aug;
}
aug=inf;
}
goto loop;
}
}
int mdis=n;
for(int i=head[u];i!=-1;i=E[i].next){
int v=E[i].v;
if(E[i].w&&mdis>dis[v]){
cur[u]=i;
mdis=dis[v];
}
}
if(--gap[dis[u]]==0)break;
gap[dis[u]=mdis+1]++;
u=pre[u];
}
return maxflow;
}
}G;
int main(){
int cas=1;
int T;
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d",&n,&m);
G.init(n);
int mx=0;
int sum=0;
for(int i=1;i<=n;i++){
int pi,si,ei;
scanf("%d%d%d",&pi,&si,&ei);
mx=max(mx,ei);
sum+=pi;
G.insert(0,i,pi);
for(int j=si;j<=ei;j++){
G.insert(i,n+j,1);
}
}
for(int i=1;i<=mx;i++){
G.insert(n+i,mx+n+1,m);
}
G.n=mx+n+1;
if(G.maxFlow(0,mx+n+1)==sum){
printf("Case %d: Yes\n",cas++);
}
else {
printf("Case %d: No\n",cas++);
}
printf("\n");
}
return 0;
}