CLIP :基于对比学习的多模态模型

CLIP(Contrastive Language–Image Pretraining,对比语言-图像预训练) 是 OpenAI 于 2021 年发布的著名多模态模型,能够理解图像与文本之间的语义关系。它的核心是:

使用对比学习方法,将图像和文本映射到一个共享的语义空间中,并通过相似度来进行匹配和推理。

CLIP 的出现极大推动了图文理解、零样本分类、跨模态检索等多模态任务的发展,是现代多模态 AI 系统的关键基石之一。


一、CLIP 是什么?

CLIP 是一种同时预训练图像编码器和文本编码器的模型。它的训练目标是:

  • 给定一张图和一句话,让模型判断它们是否匹配
  • 用成千上万的图文对,通过**对比学习(Contrastive Learning)**训练两个编码器;
  • 最终让模型能理解图像与语言之间的语义联系。

二、CLIP 的结构组成

CLIP 包含两个主要的子模型:

  1. 图像编码器(Image Encoder)

    • 通常使用 ResNet 或 Vision Transformer(ViT);
    • 输入图像 → 输出图像向量。
  2. 文本编码器(Text Encoder)

    • 使用 Transformer(类似 GPT);
    • 输入一段自然语言文本 → 输出文本向量。

二者都将输入映射到一个 共享语义空间(Shared Embedding Space),在这个空间中,可以通过余弦相似度判断图像与文本的匹配程度。


三、训练方法:对比学习(Contrastive Learning)

训练数据:成对的图像与描述性文本(如“一个正在吃披萨的男人”)

训练目标:

  • 对于每一张图,匹配的文本向量要与图像向量距离最近;
  • 对于每一段文本,它对应的图像要在所有图像中相似度最高。

损失函数:

使用 InfoNCE 损失

L = − log ⁡ exp ⁡ ( sim ( I , T + ) ) ∑ j = 1 N exp ⁡ ( sim ( I , T j ) ) \mathcal{L} = -\log \frac{\exp(\text{sim}(I, T^+))}{\sum_{j=1}^N \exp(\text{sim}(I, T_j))} L=logj=1Nexp(sim(I,Tj))exp(sim(I,T+))

其中:

  • I I I 是图像向量, T + T^+ T+ 是对应文本;
  • sim ( I , T ) \text{sim}(I, T) sim(I,T) 表示余弦相似度;
  • N 表示一个 batch 的样本数。

这种训练方式使 CLIP 学会了图像与自然语言之间的语义对应关系。


四、CLIP 的关键能力

1. 零样本图像分类(Zero-Shot Image Classification)

不需要针对特定任务微调模型,只需要设计合适的自然语言标签,就可以做图像分类。

示例

from PIL import Image
import clip
import torch

model, preprocess = clip.load("ViT-B/32")
image = preprocess(Image.open("cat.jpg")).unsqueeze(0)
text = clip.tokenize(["a cat", "a dog", "a car"])

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

    logits = (image_features @ text_features.T).softmax(dim=-1)

输出表示图像与每个文本标签的相似度。

2. 跨模态检索(Text → Image / Image → Text)

可以用一句话检索匹配的图像,或用图像检索描述它的文本。

3. 多模态理解与推理

CLIP 已成为下游多模态系统(如 DALL·E 2、Stable Diffusion、BLIP、MiniGPT-4)的感知模块之一。


五、CLIP 的优势

优势说明
无需任务特定训练支持零样本推理
统一的语义空间图文之间可以直接比较
泛化能力强支持任意自然语言描述,不局限于固定类别
可组合性强可与其他模块组合用于图像生成、问答、标注等任务

六、CLIP 的应用场景

  1. 图像分类(零样本 / 少样本)
  2. 图文检索系统(搜索图像、搜索描述)
  3. 多模态问答系统(如 Visual ChatGPT、MiniGPT-4)
  4. 图像生成引导(在 Stable Diffusion 中作为 Prompt 编码器)
  5. 内容审查、图片匹配、图文一致性检测

七、开源与生态

  • 官方模型发布:ViT-B/32, RN50, ViT-L/14
  • 推理库:openai/CLIP, open_clip, transformers(支持 CLIPModel)
  • 中文优化版本:
    • Taiyi-CLIP(IDEA)
    • Chinese-CLIP(清华)
    • CPT(百度)
    • WuDaoCLIP(智源)

八、CLIP 的局限与挑战

问题描述
语言偏差训练数据来自互联网,可能存在刻板印象或不当内容
图像细节捕捉能力有限对小物体或复杂布局图像表现不如专门模型
空间信息弱ViT 特征缺乏空间显著性,难以直接用于目标定位
无法主动生成CLIP 只做匹配,不具备直接的生成能力(可用于引导)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值