一、基本求导公式
-
常数函数的导数
d d x [ c ] = 0 \frac{d}{dx} [c] = 0 dxd[c]=0其中 c c c 是常数。
-
幂函数的导数
d d x [ x n ] = n x n − 1 \frac{d}{dx} [x^n] = n x^{n-1} dxd[xn]=nxn−1其中 n n n 是实数。
-
指数函数的导数
-
自然指数函数:
d d x [ e x ] = e x \frac{d}{dx} [e^{x}] = e^{x} dxd[ex]=ex -
一般指数函数:
d d x [ a x ] = a x ln a \frac{d}{dx} [a^{x}] = a^{x} \ln a dxd[ax]=axlna其中 a > 0 a > 0 a>0, a ≠ 1 a \neq 1 a=1。
-
-
对数函数的导数
-
自然对数函数:
d d x [ ln x ] = 1 x , x > 0 \frac{d}{dx} [\ln x] = \frac{1}{x}, \quad x > 0 dxd[lnx]=x1,x>0 -
一般对数函数:
d d x [ log a x ] = 1 x ln a , x > 0 , a > 0 , a ≠ 1 \frac{d}{dx} [\log_a x] = \frac{1}{x \ln a}, \quad x > 0, \ a > 0, \ a \neq 1 dxd[logax]=xlna1,x>0, a>0, a=1
-
-
三角函数的导数
-
d d x [ sin x ] = cos x \displaystyle \frac{d}{dx} [\sin x] = \cos x dxd[sinx]=cosx
-
d d x [ cos x ] = − sin x \displaystyle \frac{d}{dx} [\cos x] = -\sin x dxd[cosx]=−sinx
-
d d x [ tan x ] = sec 2 x \displaystyle \frac{d}{dx} [\tan x] = \sec^2 x dxd[tanx]=sec2x
-
d d x [ cot x ] = − csc 2 x \displaystyle \frac{d}{dx} [\cot x] = -\csc^2 x dxd[cotx]=−csc2x
-
d d x [ sec x ] = sec x tan x \displaystyle \frac{d}{dx} [\sec x] = \sec x \tan x dxd[secx]=secxtanx
-
d d x [ csc x ] = − csc x cot x \displaystyle \frac{d}{dx} [\csc x] = -\csc x \cot x dxd[cscx]=−cscxcotx
-
-
反三角函数的导数
-
d d x [ arcsin x ] = 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 dxd[arcsinx]=1−x21,∣x∣<1
-
d d x [ arccos x ] = − 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\arccos x] = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 dxd[arccosx]=−1−x21,∣x∣<1
-
d d x [ arctan x ] = 1 1 + x 2 \displaystyle \frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} dxd[arctanx]=1+x21
-
d d x [ a r c c o t x ] = − 1 1 + x 2 \displaystyle \frac{d}{dx} [arccot x] = -\frac{1}{1 + x^2} dxd[arccotx]=−1+x21
-
d d x [ a r c s e c x ] = 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 \displaystyle \frac{d}{dx} [arcsec x] = \frac{1}{|x| \sqrt{x^2 - 1}}, \quad |x| > 1 dxd[arcsecx]=∣x∣x2−11,∣x∣>1
-
d d x [ a r c c s c x ] = − 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 \displaystyle \frac{d}{dx} [arccsc x] = -\frac{1}{|x| \sqrt{x^2 - 1}}, \quad |x| > 1 dxd[arccscx]=−∣x∣x2−11,∣x∣>1
-
-
双曲函数的导数
-
d d x [ sinh x ] = cosh x \displaystyle \frac{d}{dx} [\sinh x] = \cosh x dxd[sinhx]=coshx
-
d d x [ cosh x ] = sinh x \displaystyle \frac{d}{dx} [\cosh x] = \sinh x dxd[coshx]=sinhx
-
d d x [ tanh x ] = sech 2 x \displaystyle \frac{d}{dx} [\tanh x] = \text{sech}^2 x dxd[tanhx]=sech2x
-
d d x [ coth x ] = − csch 2 x \displaystyle \frac{d}{dx} [\coth x] = -\text{csch}^2 x dxd[cothx]=−csch2x
-
d d x [ sech x ] = − sech x tanh x \displaystyle \frac{d}{dx} [\ \text{sech} \ x] = -\text{sech} \ x \tanh x dxd[ sech x]=−sech xtanhx
-
d d x [ csch x ] = − csch x coth x \displaystyle \frac{d}{dx} [\ \text{csch} \ x] = -\text{csch} \ x \coth x dxd[ csch x]=−csch xcothx
-
-
反双曲函数的导数
-
d d x [ sinh − 1 x ] = 1 x 2 + 1 \displaystyle \frac{d}{dx} [\sinh^{-1} x] = \frac{1}{\sqrt{x^2 + 1}} dxd[sinh−1x]=x2+11
-
d d x [ cosh − 1 x ] = 1 x 2 − 1 , x > 1 \displaystyle \frac{d}{dx} [\cosh^{-1} x] = \frac{1}{\sqrt{x^2 - 1}}, \quad x > 1 dxd[cosh−1x]=x2−11,x>1
-
d d x [ tanh − 1 x ] = 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\tanh^{-1} x] = \frac{1}{1 - x^2}, \quad |x| < 1 dxd[tanh−1x]=1−x21,∣x∣<1
-
二、基本求导法则
-
常数倍法则
d d x [ c ⋅ f ( x ) ] = c ⋅ f ′ ( x ) \frac{d}{dx} [c \cdot f(x)] = c \cdot f'(x) dxd[c⋅f(x)]=c⋅f′(x) -
和差法则
d d x [ f ( x ) ± g ( x ) ] = f ′ ( x ) ± g ′ ( x ) \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) dxd[f(x)±g(x)]=f′(x)±g′(x) -
乘积法则
d d x [ f ( x ) ⋅ g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \frac{d}{dx} [f(x) \cdot g(x)] = f'(x) g(x) + f(x) g'(x) dxd[f(x)⋅g(x)]=f′(x)g(x)+f(x)g′(x) -
商数法则
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 , g ( x ) ≠ 0 \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}, \quad g(x) \neq 0 dxd[g(x)f(x)]=[g(x)]2f′(x)g(x)−f(x)g′(x),g(x)=0 -
链式法则
d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x) dxd[f(g(x))]=f′(g(x))⋅g′(x)
三、复合函数的导数
-
幂函数的复合
d d x [ u ( x ) ] n = n [ u ( x ) ] n − 1 ⋅ u ′ ( x ) \frac{d}{dx} [u(x)]^n = n [u(x)]^{n-1} \cdot u'(x) dxd[u(x)]n=n[u(x)]n−1⋅u′(x) -
指数函数的复合
d d x [ e u ( x ) ] = e u ( x ) ⋅ u ′ ( x ) \frac{d}{dx} [e^{u(x)}] = e^{u(x)} \cdot u'(x) dxd[eu(x)]=eu(x)⋅u′(x) -
对数函数的复合
d d x [ ln u ( x ) ] = u ′ ( x ) u ( x ) , u ( x ) > 0 \frac{d}{dx} [\ln u(x)] = \frac{u'(x)}{u(x)}, \quad u(x) > 0 dxd[lnu(x)]=u(x)u′(x),u(x)>0 -
三角函数的复合
-
d d x [ sin u ( x ) ] = cos u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\sin u(x)] = \cos u(x) \cdot u'(x) dxd[sinu(x)]=cosu(x)⋅u′(x)
-
d d x [ cos u ( x ) ] = − sin u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\cos u(x)] = -\sin u(x) \cdot u'(x) dxd[cosu(x)]=−sinu(x)⋅u′(x)
-
d d x [ tan u ( x ) ] = sec 2 u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\tan u(x)] = \sec^2 u(x) \cdot u'(x) dxd[tanu(x)]=sec2u(x)⋅u′(x)
-
-
反三角函数的复合
-
d d x [ arcsin u ( x ) ] = u ′ ( x ) 1 − [ u ( x ) ] 2 , ∣ u ( x ) ∣ < 1 \displaystyle \frac{d}{dx} [\arcsin u(x)] = \frac{u'(x)}{\sqrt{1 - [u(x)]^2}}, \quad |u(x)| < 1 dxd[arcsinu(x)]=1−[u(x)]2u′(x),∣u(x)∣<1
-
d d x [ arccos u ( x ) ] = − u ′ ( x ) 1 − [ u ( x ) ] 2 , ∣ u ( x ) ∣ < 1 \displaystyle \frac{d}{dx} [\arccos u(x)] = -\frac{u'(x)}{\sqrt{1 - [u(x)]^2}}, \quad |u(x)| < 1 dxd[arccosu(x)]=−1−[u(x)]2u′(x),∣u(x)∣<1
-
d d x [ arctan u ( x ) ] = u ′ ( x ) 1 + [ u ( x ) ] 2 \displaystyle \frac{d}{dx} [\arctan u(x)] = \frac{u'(x)}{1 + [u(x)]^2} dxd[arctanu(x)]=1+[u(x)]2u′(x)
-
-
双曲函数的复合
-
d d x [ sinh u ( x ) ] = cosh u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\sinh u(x)] = \cosh u(x) \cdot u'(x) dxd[sinhu(x)]=coshu(x)⋅u′(x)
-
d d x [ cosh u ( x ) ] = sinh u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\cosh u(x)] = \sinh u(x) \cdot u'(x) dxd[coshu(x)]=sinhu(x)⋅u′(x)
-
d d x [ tanh u ( x ) ] = sech 2 u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\tanh u(x)] = \text{sech}^2 u(x) \cdot u'(x) dxd[tanhu(x)]=sech2u(x)⋅u′(x)
-
四、高阶导数
-
二阶导数
f ′ ′ ( x ) = d d x [ f ′ ( x ) ] = d 2 f d x 2 f''(x) = \frac{d}{dx} [f'(x)] = \frac{d^2 f}{dx^2} f′′(x)=dxd[f′(x)]=dx2d2f -
n 阶导数
f ( n ) ( x ) = d n f d x n f^{(n)}(x) = \frac{d^{n} f}{dx^{n}} f(n)(x)=dxndnf
五、特殊求导技巧
-
对数求导法
当函数形式为变量的乘积、商或幂次时,可以取对数简化求导过程。
步骤:
-
取对数:对函数两边取自然对数, ln y = ln f ( x ) \ln y = \ln f(x) lny=lnf(x)。
-
求导:对等式两边求导,利用链式法则。
1 y ⋅ d y d x = d d x [ ln f ( x ) ] \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} [\ln f(x)] y1⋅dxdy=dxd[lnf(x)] -
解出导数:
d y d x = y ⋅ d d x [ ln f ( x ) ] \frac{dy}{dx} = y \cdot \frac{d}{dx} [\ln f(x)] dxdy=y⋅dxd[lnf(x)]
-
-
隐函数求导
对于隐式定义的函数 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0,求 y y y 关于 x x x 的导数:
d y d x = − ∂ F / ∂ x ∂ F / ∂ y \frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y} dxdy=−∂F/∂y∂F/∂x其中 ∂ F / ∂ x \partial F/\partial x ∂F/∂x 和 ∂ F / ∂ y \partial F/\partial y ∂F/∂y 分别是 F F F 对 x x x 和 y y y 的偏导数。
-
参数方程求导
如果 x x x 和 y y y 都是参数 t t t 的函数:
d y d x = d y / d t d x / d t , d x / d t ≠ 0 \frac{dy}{dx} = \frac{dy/dt}{dx/dt}, \quad dx/dt \neq 0 dxdy=dx/dtdy/dt,dx/dt=0
六、注意事项
-
定义域与条件
在应用求导公式时,需注意函数的定义域和适用条件。例如, ln x \ln x lnx 的定义域是 x > 0 x > 0 x>0。
-
符号与正负
特别是在反三角函数和反双曲函数的导数中,要注意正负号和绝对值的处理。
-
链式法则的重要性
当遇到复合函数时,一定要使用链式法则,先求外层函数的导数,再乘以内层函数的导数。
-
高阶导数
在求二阶或更高阶导数时,需反复应用求导法则,并进行适当的简化。