数学中常用的求导数的公式汇总

一、基本求导公式

  1. 常数函数的导数
    d d x [ c ] = 0 \frac{d}{dx} [c] = 0 dxd[c]=0

    其中 c c c 是常数。

  2. 幂函数的导数
    d d x [ x n ] = n x n − 1 \frac{d}{dx} [x^n] = n x^{n-1} dxd[xn]=nxn1

    其中 n n n 是实数。

  3. 指数函数的导数

    • 自然指数函数
      d d x [ e x ] = e x \frac{d}{dx} [e^{x}] = e^{x} dxd[ex]=ex

    • 一般指数函数
      d d x [ a x ] = a x ln ⁡ a \frac{d}{dx} [a^{x}] = a^{x} \ln a dxd[ax]=axlna

      其中 a > 0 a > 0 a>0 a ≠ 1 a \neq 1 a=1

  4. 对数函数的导数

    • 自然对数函数
      d d x [ ln ⁡ x ] = 1 x , x > 0 \frac{d}{dx} [\ln x] = \frac{1}{x}, \quad x > 0 dxd[lnx]=x1,x>0

    • 一般对数函数
      d d x [ log ⁡ a x ] = 1 x ln ⁡ a , x > 0 ,   a > 0 ,   a ≠ 1 \frac{d}{dx} [\log_a x] = \frac{1}{x \ln a}, \quad x > 0, \ a > 0, \ a \neq 1 dxd[logax]=xlna1,x>0, a>0, a=1

  5. 三角函数的导数

    • d d x [ sin ⁡ x ] = cos ⁡ x \displaystyle \frac{d}{dx} [\sin x] = \cos x dxd[sinx]=cosx

    • d d x [ cos ⁡ x ] = − sin ⁡ x \displaystyle \frac{d}{dx} [\cos x] = -\sin x dxd[cosx]=sinx

    • d d x [ tan ⁡ x ] = sec ⁡ 2 x \displaystyle \frac{d}{dx} [\tan x] = \sec^2 x dxd[tanx]=sec2x

    • d d x [ cot ⁡ x ] = − csc ⁡ 2 x \displaystyle \frac{d}{dx} [\cot x] = -\csc^2 x dxd[cotx]=csc2x

    • d d x [ sec ⁡ x ] = sec ⁡ x tan ⁡ x \displaystyle \frac{d}{dx} [\sec x] = \sec x \tan x dxd[secx]=secxtanx

    • d d x [ csc ⁡ x ] = − csc ⁡ x cot ⁡ x \displaystyle \frac{d}{dx} [\csc x] = -\csc x \cot x dxd[cscx]=cscxcotx

  6. 反三角函数的导数

    • d d x [ arcsin ⁡ x ] = 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\arcsin x] = \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 dxd[arcsinx]=1x2 1,x<1

    • d d x [ arccos ⁡ x ] = − 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\arccos x] = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1 dxd[arccosx]=1x2 1,x<1

    • d d x [ arctan ⁡ x ] = 1 1 + x 2 \displaystyle \frac{d}{dx} [\arctan x] = \frac{1}{1 + x^2} dxd[arctanx]=1+x21

    • d d x [ a r c c o t x ] = − 1 1 + x 2 \displaystyle \frac{d}{dx} [arccot x] = -\frac{1}{1 + x^2} dxd[arccotx]=1+x21

    • d d x [ a r c s e c x ] = 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 \displaystyle \frac{d}{dx} [arcsec x] = \frac{1}{|x| \sqrt{x^2 - 1}}, \quad |x| > 1 dxd[arcsecx]=xx21 1,x>1

    • d d x [ a r c c s c x ] = − 1 ∣ x ∣ x 2 − 1 , ∣ x ∣ > 1 \displaystyle \frac{d}{dx} [arccsc x] = -\frac{1}{|x| \sqrt{x^2 - 1}}, \quad |x| > 1 dxd[arccscx]=xx21 1,x>1

  7. 双曲函数的导数

    • d d x [ sinh ⁡ x ] = cosh ⁡ x \displaystyle \frac{d}{dx} [\sinh x] = \cosh x dxd[sinhx]=coshx

    • d d x [ cosh ⁡ x ] = sinh ⁡ x \displaystyle \frac{d}{dx} [\cosh x] = \sinh x dxd[coshx]=sinhx

    • d d x [ tanh ⁡ x ] = sech 2 x \displaystyle \frac{d}{dx} [\tanh x] = \text{sech}^2 x dxd[tanhx]=sech2x

    • d d x [ coth ⁡ x ] = − csch 2 x \displaystyle \frac{d}{dx} [\coth x] = -\text{csch}^2 x dxd[cothx]=csch2x

    • d d x [  sech  x ] = − sech  x tanh ⁡ x \displaystyle \frac{d}{dx} [\ \text{sech} \ x] = -\text{sech} \ x \tanh x dxd[ sech x]=sech xtanhx

    • d d x [  csch  x ] = − csch  x coth ⁡ x \displaystyle \frac{d}{dx} [\ \text{csch} \ x] = -\text{csch} \ x \coth x dxd[ csch x]=csch xcothx

  8. 反双曲函数的导数

    • d d x [ sinh ⁡ − 1 x ] = 1 x 2 + 1 \displaystyle \frac{d}{dx} [\sinh^{-1} x] = \frac{1}{\sqrt{x^2 + 1}} dxd[sinh1x]=x2+1 1

    • d d x [ cosh ⁡ − 1 x ] = 1 x 2 − 1 , x > 1 \displaystyle \frac{d}{dx} [\cosh^{-1} x] = \frac{1}{\sqrt{x^2 - 1}}, \quad x > 1 dxd[cosh1x]=x21 1,x>1

    • d d x [ tanh ⁡ − 1 x ] = 1 1 − x 2 , ∣ x ∣ < 1 \displaystyle \frac{d}{dx} [\tanh^{-1} x] = \frac{1}{1 - x^2}, \quad |x| < 1 dxd[tanh1x]=1x21,x<1


二、基本求导法则

  1. 常数倍法则
    d d x [ c ⋅ f ( x ) ] = c ⋅ f ′ ( x ) \frac{d}{dx} [c \cdot f(x)] = c \cdot f'(x) dxd[cf(x)]=cf(x)

  2. 和差法则
    d d x [ f ( x ) ± g ( x ) ] = f ′ ( x ) ± g ′ ( x ) \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) dxd[f(x)±g(x)]=f(x)±g(x)

  3. 乘积法则
    d d x [ f ( x ) ⋅ g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \frac{d}{dx} [f(x) \cdot g(x)] = f'(x) g(x) + f(x) g'(x) dxd[f(x)g(x)]=f(x)g(x)+f(x)g(x)

  4. 商数法则
    d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 , g ( x ) ≠ 0 \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}, \quad g(x) \neq 0 dxd[g(x)f(x)]=[g(x)]2f(x)g(x)f(x)g(x),g(x)=0

  5. 链式法则
    d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x) dxd[f(g(x))]=f(g(x))g(x)


三、复合函数的导数

  1. 幂函数的复合
    d d x [ u ( x ) ] n = n [ u ( x ) ] n − 1 ⋅ u ′ ( x ) \frac{d}{dx} [u(x)]^n = n [u(x)]^{n-1} \cdot u'(x) dxd[u(x)]n=n[u(x)]n1u(x)

  2. 指数函数的复合
    d d x [ e u ( x ) ] = e u ( x ) ⋅ u ′ ( x ) \frac{d}{dx} [e^{u(x)}] = e^{u(x)} \cdot u'(x) dxd[eu(x)]=eu(x)u(x)

  3. 对数函数的复合
    d d x [ ln ⁡ u ( x ) ] = u ′ ( x ) u ( x ) , u ( x ) > 0 \frac{d}{dx} [\ln u(x)] = \frac{u'(x)}{u(x)}, \quad u(x) > 0 dxd[lnu(x)]=u(x)u(x),u(x)>0

  4. 三角函数的复合

    • d d x [ sin ⁡ u ( x ) ] = cos ⁡ u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\sin u(x)] = \cos u(x) \cdot u'(x) dxd[sinu(x)]=cosu(x)u(x)

    • d d x [ cos ⁡ u ( x ) ] = − sin ⁡ u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\cos u(x)] = -\sin u(x) \cdot u'(x) dxd[cosu(x)]=sinu(x)u(x)

    • d d x [ tan ⁡ u ( x ) ] = sec ⁡ 2 u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\tan u(x)] = \sec^2 u(x) \cdot u'(x) dxd[tanu(x)]=sec2u(x)u(x)

  5. 反三角函数的复合

    • d d x [ arcsin ⁡ u ( x ) ] = u ′ ( x ) 1 − [ u ( x ) ] 2 , ∣ u ( x ) ∣ < 1 \displaystyle \frac{d}{dx} [\arcsin u(x)] = \frac{u'(x)}{\sqrt{1 - [u(x)]^2}}, \quad |u(x)| < 1 dxd[arcsinu(x)]=1[u(x)]2 u(x),u(x)<1

    • d d x [ arccos ⁡ u ( x ) ] = − u ′ ( x ) 1 − [ u ( x ) ] 2 , ∣ u ( x ) ∣ < 1 \displaystyle \frac{d}{dx} [\arccos u(x)] = -\frac{u'(x)}{\sqrt{1 - [u(x)]^2}}, \quad |u(x)| < 1 dxd[arccosu(x)]=1[u(x)]2 u(x),u(x)<1

    • d d x [ arctan ⁡ u ( x ) ] = u ′ ( x ) 1 + [ u ( x ) ] 2 \displaystyle \frac{d}{dx} [\arctan u(x)] = \frac{u'(x)}{1 + [u(x)]^2} dxd[arctanu(x)]=1+[u(x)]2u(x)

  6. 双曲函数的复合

    • d d x [ sinh ⁡ u ( x ) ] = cosh ⁡ u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\sinh u(x)] = \cosh u(x) \cdot u'(x) dxd[sinhu(x)]=coshu(x)u(x)

    • d d x [ cosh ⁡ u ( x ) ] = sinh ⁡ u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\cosh u(x)] = \sinh u(x) \cdot u'(x) dxd[coshu(x)]=sinhu(x)u(x)

    • d d x [ tanh ⁡ u ( x ) ] = sech 2 u ( x ) ⋅ u ′ ( x ) \displaystyle \frac{d}{dx} [\tanh u(x)] = \text{sech}^2 u(x) \cdot u'(x) dxd[tanhu(x)]=sech2u(x)u(x)


四、高阶导数

  1. 二阶导数
    f ′ ′ ( x ) = d d x [ f ′ ( x ) ] = d 2 f d x 2 f''(x) = \frac{d}{dx} [f'(x)] = \frac{d^2 f}{dx^2} f′′(x)=dxd[f(x)]=dx2d2f

  2. n 阶导数
    f ( n ) ( x ) = d n f d x n f^{(n)}(x) = \frac{d^{n} f}{dx^{n}} f(n)(x)=dxndnf


五、特殊求导技巧

  1. 对数求导法

    当函数形式为变量的乘积、商或幂次时,可以取对数简化求导过程。

    步骤

    • 取对数:对函数两边取自然对数, ln ⁡ y = ln ⁡ f ( x ) \ln y = \ln f(x) lny=lnf(x)

    • 求导:对等式两边求导,利用链式法则。
      1 y ⋅ d y d x = d d x [ ln ⁡ f ( x ) ] \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} [\ln f(x)] y1dxdy=dxd[lnf(x)]

    • 解出导数
      d y d x = y ⋅ d d x [ ln ⁡ f ( x ) ] \frac{dy}{dx} = y \cdot \frac{d}{dx} [\ln f(x)] dxdy=ydxd[lnf(x)]

  2. 隐函数求导

    对于隐式定义的函数 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0,求 y y y 关于 x x x 的导数:
    d y d x = − ∂ F / ∂ x ∂ F / ∂ y \frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y} dxdy=F/yF/x

    其中 ∂ F / ∂ x \partial F/\partial x F/x ∂ F / ∂ y \partial F/\partial y F/y 分别是 F F F x x x y y y 的偏导数。

  3. 参数方程求导

    如果 x x x y y y 都是参数 t t t 的函数:
    d y d x = d y / d t d x / d t , d x / d t ≠ 0 \frac{dy}{dx} = \frac{dy/dt}{dx/dt}, \quad dx/dt \neq 0 dxdy=dx/dtdy/dt,dx/dt=0


六、注意事项

  • 定义域与条件

    在应用求导公式时,需注意函数的定义域和适用条件。例如, ln ⁡ x \ln x lnx 的定义域是 x > 0 x > 0 x>0

  • 符号与正负

    特别是在反三角函数和反双曲函数的导数中,要注意正负号和绝对值的处理。

  • 链式法则的重要性

    当遇到复合函数时,一定要使用链式法则,先求外层函数的导数,再乘以内层函数的导数。

  • 高阶导数

    在求二阶或更高阶导数时,需反复应用求导法则,并进行适当的简化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值