机器学习公式(代价函数,梯度下降函数)

本文探讨了特征缩放的重要性,它通常将特征值范围限制在-1到1之间,以优化算法性能。对比了梯度下降法与正规方程法在特征值求解上的差异,指出当变量数量小于1万时,正规方程法可能更快,而超过1万则推荐使用梯度下降法。此外,还提到了逻辑回归在预测问题中的应用。
摘要由CSDN通过智能技术生成

多元梯度下降法

特征缩放法

特征缩放法一般喜欢把范围 取在 -1 < x < 1附近,所以,我们应该尽可能将原来表达式通过加减法得到这个范围

 x = (当前值 - (范围内平均值))/范围

梯度下降法求 特征值 与 正规方程法求特征值比较,在变量数小于1万,一般选用正规方程法较快,数量大于1万选择梯度下降法

逻辑回归

利用逻辑回归预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值