算法实现流程:
步骤1:初始化马的位置(结构体horse {x, y})
步骤2:确定马从当前点出发,可跳跃的附近8个点,以结构体Jump数组给出,但需判断当前给出的附近8个点是否曾经访问过,或者是否这8个点超出棋盘尺寸。
步骤3:跟据步骤2确定跳跃的点,分别计算可跳跃点的下下一步,可跳跃点的个数。并选出下下步可跳跃点数最少的点作为马下一步跳跃的点。(举例说明:马当前所在点坐标(4,4),下一步可跳跃点有(5,2),(6,3),且(5,2)下一步可跳跃点有3个,(6,3)下一步可跳跃点2个;3 > 2这个时候,选择下下一跳小的点进行跳跃,则马下一跳为(6,3))
流程图:
#pragma once
#include <iostream>
#include <math.h>
using namespace std;
#define SAFE_DELETE(x) if (x != NULL) {delete(x); x = NULL;}
#define SAFE_DELETE_ARR(x) if (x != NULL) {delete[](x); x = NULL;}
#define PRING_ARR(title, arr, n) {cout << title << " "; for (int i=0; i<n; i++) {cout << arr[i] << " ";} cout << endl;}
#define INF 9999999
typedef struct
{
int x;
int y;
}Location;
typedef struct
{
int delx;
int dely;
}Jump;
class HorseRun
{
private:
int** altas;
int N; //棋盘的宽
Location horse; //马当前的位置
public:
HorseRun()
{
N = 8;
altas = new int* [N]();
for (int j = 0; j < N; j++)
{
altas[j] = new int[N]();
memset(altas[j], 0, sizeof(int) * N);
}
//随机生成马的初始位置
horse = { rand() % N, rand() % N };
altas[horse.x][horse.y] = 1;
cout << "马初始位置:" << "(" << horse.x << "," << horse.y << ")" << endl;
Visit();
}
~HorseRun()
{
for (int i = 0; i < N; i++)
SAFE_DELETE_ARR(altas[i]);
SAFE_DELETE_ARR(altas);
}
inline void Visit()
{
Jump jump[8] = { {1,-2}, {2, -1}, {2, 1}, {1, 2}, {-1, 2}, {-2, 1}, {-2, -1}, {-1, -2} };
int max_visit = 63;
int forward_x, forward_y, forward_xx, forward_yy, w_cnt, min_cnt, tmp_run_x, tmp_run_y;
while (max_visit-- > 0)
{
min_cnt = INF;
//棋子可跳八个方位
for (int i = 0; i < 8; i++)
{
forward_x = horse.x + jump[i].delx;
forward_y = horse.y + jump[i].dely;
//判断这两个坐标是否有效
if (forward_x < 0 || forward_x >= N || forward_y < 0 || forward_y >= N || altas[forward_x][forward_y] == 1)
continue;
w_cnt = 0;
for (int j = 0; j < 8; j++)
{
forward_xx = forward_x + jump[j].delx;
forward_yy = forward_y + jump[j].dely;
if (forward_xx < 0 || forward_xx >= N || forward_yy < 0 || forward_yy >= N || altas[forward_xx][forward_yy] == 1)
continue;
w_cnt++;
}
if (min_cnt > w_cnt)
{
min_cnt = w_cnt;
tmp_run_x = forward_x;
tmp_run_y = forward_y;
}
}
//棋子移动判断
if (min_cnt == INF)
{
cout << "没有找到可以移动的地方" << endl;
break;
}
else
{
horse.x = tmp_run_x;
horse.y = tmp_run_y;
altas[tmp_run_x][tmp_run_y] = 1;
cout <<"第"<< 63 - max_visit << "步," << "棋子当前移动到:" << "(" << tmp_run_x << ", " << tmp_run_y << ")" << endl;
}
}
}
};
#define _CRT_SECURE_NO_WARNINGS true
#include "HorseRun.h"
int main()
{
HorseRun app;
return 0;
}
运行结果输出1-63步马行驶的具体路径信息:
中间还有很多输出省略。。。