NLP应用
- 语言问答
- 机器翻译
- 智能搜索(同义词替换,拼写检查,sql生成)
人类语言的特殊性
人类语言并不是海量的信息,它需要传递指定的信息,具有复杂性,符号也代表情感。
人类语言都有连续性,用于自然语言处理的深度学习也应该具有连续性。
深度学习
目前的机器学习,依然是通过手工构建出一系列有用的特征,然后让模型根据这些特征取训练,实际上机器并没有学习到什么东西,反倒是人类学习到了很多东西,做了很多的理论研究来证明哪些特征是有用的。机器唯一在做的就是数值优化。机器学习中90%的工作都是人类如何描述数据,总结出重要的特征。
深度学习只提供给电脑原始的数据,自己总结、构造出有用的特征。 深度学习大部分的情况讲的都是神经网络。
手动设计的特征太过于具体,不完整,而且需要花费很长的时间来验证,最终只能达到一定的变现水平。但是学习得到的特征适应强,训练速度快。但是深度学习灵活、可用、行之有效。
NLP为什么很难
表达方式多样化
表达方式歧义话,模棱两可
人类的表达依赖于对其他知识的认知
小龙女来到桃花岛:我也想去过过过过的生活。