-
查看cuda 版本
cat /usr/local/cuda/version.txt -
查看cudnn 版本
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 -
查看显卡驱动版本
cat /proc/driver/nvidia/version
或输入nvidia-smi -
cuda安装
1.驱动安装完成后,下载cuda安装包(https://developer.nvidia.com/cuda-toolkit-archive)
2.sudo ./cuda_8.0.61_375.26_linux.run
3.一直按ctrl+F,直到100%
4.其它的按部就班,但选择不安装驱动
5.出现***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work时,不用管它,此时只要安装的驱动版本更高比它更高即可
6.将cuda添加到环境变量,在~/.bashrc文件中末尾加上
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
7.在NVIDIA_CUDA-8.0_Samples中编译相关samples,能编译通过则说明安装成功 -
nvidia驱动安装
sudo apt-get purge nvidia*
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-384 nvidia-settings
reboot
注:如果要是不行,可能需要在bios里将显卡先设置成CPU集卡
验证
1.输入nvidia-smi查看
2.prime-select query查看当前选用的显卡 -
cuda卸载
cd /usr/local/cuda/bin
sudo ./uninstall_cuda_8.0.pl
cd /usr/local
sudo rm -rf cuda-8.0 -
cudnn安装
参考:https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html
-
Installing from a Tar File
Navigate to your directory containing the cuDNN Tar file.
Unzip the cuDNN package.$ tar -xzvf cudnn-9.0-linux-x64-v7.tgz
Copy the following files into the CUDA Toolkit directory, and change the file permissions.
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* -
Installing from a Debian File
Navigate to your directory containing cuDNN Debian file.
Install the runtime library, for example:sudo dpkg -i libcudnn7_7.0.3.11-1+cuda9.0_amd64.deb
Install the developer library, for example:
sudo dpkg -i libcudnn7-devel_7.0.3.11-1+cuda9.0_amd64.deb
Install the code samples and the cuDNN Library User Guide, for example:
sudo dpkg -i libcudnn7-doc_7.0.3.11-1+cuda9.0_amd64.deb