自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 ubuntu中安装使用Geph

我的显示name:GephGui,Application ID:io.geph.GephGui。然后就出来图形界面了,就可以正常使用了,只不过每次打开Geph,都需要在终端输入2.8的命令。2.1 在flatpak安装包的所在目录下,右键,在终端打开,然后在终端中输入以下命令。下载Linux(flatpak)的安装包,后缀拓展名是flatpak。2.7 安装完成后,查看Geph的Application ID。Flathub是Flatpak的官方仓库。2.6 安装Geph的Flatpak文件。

2024-10-28 14:49:04 296

原创 运行PyCIL时,遇到RuntimeError: Expected object of scalar type Long but got scalar type Int for argument #2

修改方法是,注释的是原本的代码,注释的上一行是修改后的代码。我想运行PyCIL,安装完环境后,运行下列命令。在运行过程中总共遇到三处这个错误,上面是第一处。

2024-09-09 14:27:24 162

原创 安装Git,并在Pycharm中配置

中间选择Git文件默认的编辑器时,我电脑上只有Pycharm,我需要选Pycharm,但并没有Pycharm这个选项,做法是先选择其他编辑器,然后弹出一个框让你选其他编辑器的可执行文件的路径。右击Pycharm桌面快捷方式,然后打开文件所在位置,就找到了Pycharm的路径。文件 -> 设置,第4步Git路径是Git的安装目录\Git\bin\git.exe。选择好Git路径,然后点测试,在下方就会显示Git版本号。这时在Pycharm终端输入git --version,并不能显示版本号,还需要配置。

2024-07-16 10:28:31 416

原创 ResNet学习笔记,BN,迁移学习

Batch Normalization是一个batch_size中的所有图片的featuremap的每个通道都满足均值为0,方差为1的规律,均值μ和方差δ2是向量,第一个值是第一个通道的均值和方差,第二个值是第二个通道的均值和方差。均值和方差是正向传播中计算得到的,γ和β是反向传播中学习得到的,没有最后一个式子,均值为0方差为1,加上最后一个式子,方差为γ,均值为β。注意:除了18层和34层的conv2_x中的所有残差模块全是实线的,其余的第一个残差模块是虚线,剩下的残差模块是实线。

2024-07-09 15:43:45 336

原创 Window下安装mmDetection,其中pytorch2.3.0,失败记录

报OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root这个错,我又去装了CUDAToolkit和cuDNN,然后又装mmcv==2.0.0rc4,还报错。将下载好的压缩包解压缩,在anaconda prompt命令行界面,进入该文件的路径。双击打开Pycharm,

2024-06-29 20:57:07 389

原创 五、Windows下安装mmdetection

我装的是pytorch=2.1.0,python=3.10,cuda=11.8。pytorch的新版本有pytorch2.2.0,pytorch2.3.0,但是pytorch2.2.0,pytorch2.3.0这两个版本在装mmcv时报错,而且不好解决,所以我装的pytorch=2.1.01. 创建虚拟环境并激活打开anaconda prompt 命令行,输入下行命令创建虚拟环境,环境名是mmm,指定python版本为3.10遇到Proceed([y]/n)?时,输入y回车。

2024-06-29 20:41:49 2224 2

原创 windows下安装CUDAToolkit和cuDNN

装mmcv的时候报了个错,我看到有个解决办法说装CUDA Toolkit,我就去装了CUDA Toolkit和cuDNN,装完了这个错误解决了,又报了别的错,最后也没用到CUDA Toolkit和cuDNN,但还是记录一下。1.判断自己下载的CUDA版本打开NVIDIA控制面板我的是CUDA 12.52. 下载CUDA Toolkit安装包选择自己下载的CUDA Toolkit版本链接选择自己电脑的配置,然后下载安装包3. 安装CUDA Toolkit双击打开下载好的安装包。

2024-06-29 18:24:14 1898

原创 Pycharm2024设置中文

安装完成之后点击绿色的 Restart IDE。

2024-06-28 16:13:17 859

原创 四、Windows下安装pytorch

在激活好的虚拟环境力里输入pytorch安装命令后回车,遇到Proceed([y]/n)?我安装的是 python 3.11.0 pytorch 2.2.0 CUDA 12.1。输入下行命令后回车,遇到Proceed([y]/n)?我选历史版本中的2.2.0的版本,CUDA12.1,使用的是下行命令。python和pytorch是我不想装最新的,安装什么版本看自己了。输入这行命令回车,可以看到安装上了python和pytorch。刚打开时,位于base虚拟环境里,前面是(base)

2024-06-27 16:02:21 488

原创 三、Windows下,安装显卡驱动最新版本,确定要安装的pytorch的cuda版本

打开命令行,输入下列指令,(可以是Windows键+R键,输入cmd,回车,打开的Windows命令行,也可以是Anaconda Prompt命令行),我用的Anaconda Prompt命令行,右上角的CUDA Version就是CUDA Driver Version。就是有CUDA Driver和显卡,计算机才能用显卡,有CUDA Runtime和CUDA Driver和显卡,pytorch才能用显卡。里面有个表格,截图如下,找到自己显卡型号对应的算力,第一列是算力,第二列是显卡的架构。

2024-06-27 09:25:39 1245

原创 二、Windows下安装Pycharm

打开链接,找到社区版Community Edition,点击Download。找到自己想要下载的版本点击下载即可。

2024-06-26 16:53:02 445

原创 anaconda常用命令整理

8. 当分享代码给别人时,也需要将运行环境分享,执行此命令可以将环境下的包信息存入名为environment的yaml文件中。同样地,当执行别人的代码时,也需要配置相应的环境。这时可以用对方分享的yaml文件来创建一模一样的运行环境。1. 创建一个新的名为env_name的环境。3. 进入名为env_name的环境。5. 删除名为env_name环境。7. 查看当前环境的全部信息。13. 查询某个包发行的版本。2. 复制一个已有的环境。12. 安装指定版本的包。14.查看所有已安装的包。

2024-06-26 16:26:14 163

原创 一、Windows下安装anaconda

进入官网,点击右上方的绿色的Free Download按钮输入邮箱,勾选协议,点击绿色的Submit按钮打开在邮箱里收到下载地址的链接,点击windows系统的下载按钮,下载安装包。

2024-06-26 15:15:51 426

原创 mmDetection 用 Faster rcnn 网络训练自定义数据集

1. 在 mmdetection-main\mmdet\datasets\coco.py 文件中将原来的coco数据集的类别和调色板注释掉换成自定义数据集的类别和调色板2. 在 mmdetection-main\mmdet\evaluation\functional\class_names.py 文件中将原来的coco数据集的类别注释掉换成自定义数据集的类别,注意有两处3. 本文的data文件夹布局和coco数据集的布局一样,只是将图片和标注文件的内容换成了自定义数据集的。

2024-06-21 21:33:05 875 3

原创 mmDetection中num_worker和Dataloader的错误的解决办法

test_dataloader 和 val_dataloader 中的也要改。有个关于num_worker和Dataloader的错误的解决办法是。将上图中的两行代码改成下图的样子。

2024-06-21 20:56:10 224

原创 mmDetection 用 retinanet 网络训练自定义数据集

1. 在 mmdetection-main\mmdet\datasets\coco.py 文件中将原来的coco数据集的类别和调色板注释掉换成自定义数据集的类别和调色板2. 在 mmdetection-main\mmdet\evaluation\functional\class_names.py 文件中将原来的coco数据集的类别注释掉换成自定义数据集的类别,注意有两处3. 本文的data文件夹布局和coco数据集的布局一样,只是将图片和标注文件的内容换成了自定义数据集的。

2024-06-21 20:47:14 499

原创 Pycharm更改背景颜色,切换UI界面

1. 新UI界面切换成经典UI界面(需要重启Pycharm才能生效)2. 经典UI界面切换成新UI界面(需要重启Pycharm才能生效)3. 切换背景颜色(不需要重启Pycharm)

2024-06-21 11:41:09 832

原创 mmDetection测试是否安装成功记录

代码原本是第一行,改成第二行的样子,将bbox_color改成None。1. 从Github上下载文件夹 mmdetection-main。在image_demo.py中加入下面两行代码。但还是有warning,我没再改,就这样了。也运行出结果了,就是也有warning。2024年6月20日,于笔记本电脑上。5. 在终端命令行也测试一下。点击倒数第二个报错文件。4. 运行配置中测试。

2024-06-20 17:37:08 257

原创 GoogLeNet学习笔记

论文全名:Going deeper with convolutions。1. 引入了Inception结构,融合了不同尺度的特征信息。图5:使用1x1卷积核降维可以减少参数量的证明,来自学习视频。3. 使用1x1的卷积核进行降维,减少了参数量。2. 添加了两个辅助分类器帮助训练。图2:GoogLeNet结构参数。图1:GoogLeNet结构。图3:Inception结构。图4:辅助分类器结构。

2024-06-14 21:54:58 185

原创 VGG学习笔记

链接:https://pan.baidu.com/s/1120adtrSJbOYnW5FHHlTJg?通过堆叠多个 3 X 3 的卷积核来代替大尺度卷积核,拥有相同的感受野,但减少了参数。- 三个 3 X 3 的卷积核代替 7 X 7 的卷积核。- 两个 3 X 3 的卷积核代替 5 X 5 的卷积核。图1:感受野的计算公式,来自学习视频。图3:VGG16的网络结构。图2:证明,来自学习视频。

2024-05-30 17:29:30 138

原创 AlexNet学习笔记

论文全名:ImageNet Classification with Deep Convolutional Neural Networks。图2:AlexNet网络结构,来自学习视频。图1:AlexNet网络结构,来自论文。论文在dblp网站可以搜到。

2024-05-28 17:07:50 251 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除